Abstract

In this Letter, we propose and demonstrate a high-speed and power-efficient thermo-optic switch using an adiabatic bend with a directly integrated silicon heater to minimize the heat capacity and therein maximize the performance of the thermo-optic switch. A rapid, τ=2.4μs thermal time constant and a low electrical power consumption of Pπ=12.7mW/π-phase shift were demonstrated representing a Pπτ product of only 30.5mW·μs in a compact device with a phase shifter of only 10μm long.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Biberman, M. J. Shaw, E. Timurdogan, J. B. Wright, and M. R. Watts, Opt. Lett. 37, 4236 (2012).
    [CrossRef]
  2. M. R. Watts, D. C. Trotter, R. W. Young, and A. L. Lentine, in Proceedings of Fifth IEEE International Conference on Group IV Photonics, Vol. 46 (IEEE, 2008), pp. 4–6.
  3. C. T. DeRose, D. C. Trotter, W. A. Zortman, A. L. Starbuck, M. Fisher, M. R. Watts, and Paul S. Davids, Opt. Express 19, 24897 (2011).
    [CrossRef]
  4. M. R. Watts, W. A. Zortman, D. C. Trotter, R. W. Young, and A. L. Lentine, Opt. Express 19, 21989 (2011).
    [CrossRef]
  5. M. R. Watts, W. A. Zortman, D. C. Trotter, R. W. Young, and A. L. Lentine, IEEE J. Sel. Top. Quantum Electron. 16, 159 (2010).
    [CrossRef]
  6. R. A. Soref, Proc. IEEE 81, 1687 (1993).
    [CrossRef]
  7. P. Sun and R. M. Reano, Opt. Express 18, 8406 (2010).
    [CrossRef]
  8. C. T. DeRose, M. R. Watts, R. W. Young, D. C. Trotter, G. N. Nielson, W. Zortman, and R. D. Kekatpure, in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2011), paper OThM3.
  9. M. W. Geis, S. J. Spector, R. C. Williamson, and T. M. Lyszczarz, IEEE Photonics Technol. Lett. 16, 2514 (2004).
    [CrossRef]
  10. M. R. Watts, Opt. Lett. 35, 3231 (2010).
    [CrossRef]
  11. M. R. Watts, W. Zortman, D. Trotter, G. Nielson, D. Luck, and R. Young, in Conference on Lasers and Electro-Optics and Quantum Electronics and Laser Science Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper CPDB10.
  12. K. Solehmainen, M. Kapulainen, M. Harjanne, and T. Aalto, IEEE Photonics Technol. Lett. 18, 2287 (2006).
    [CrossRef]

2012

2011

2010

P. Sun and R. M. Reano, Opt. Express 18, 8406 (2010).
[CrossRef]

M. R. Watts, Opt. Lett. 35, 3231 (2010).
[CrossRef]

M. R. Watts, W. A. Zortman, D. C. Trotter, R. W. Young, and A. L. Lentine, IEEE J. Sel. Top. Quantum Electron. 16, 159 (2010).
[CrossRef]

2006

K. Solehmainen, M. Kapulainen, M. Harjanne, and T. Aalto, IEEE Photonics Technol. Lett. 18, 2287 (2006).
[CrossRef]

2004

M. W. Geis, S. J. Spector, R. C. Williamson, and T. M. Lyszczarz, IEEE Photonics Technol. Lett. 16, 2514 (2004).
[CrossRef]

1993

R. A. Soref, Proc. IEEE 81, 1687 (1993).
[CrossRef]

Aalto, T.

K. Solehmainen, M. Kapulainen, M. Harjanne, and T. Aalto, IEEE Photonics Technol. Lett. 18, 2287 (2006).
[CrossRef]

Biberman, A.

Davids, Paul S.

DeRose, C. T.

C. T. DeRose, D. C. Trotter, W. A. Zortman, A. L. Starbuck, M. Fisher, M. R. Watts, and Paul S. Davids, Opt. Express 19, 24897 (2011).
[CrossRef]

C. T. DeRose, M. R. Watts, R. W. Young, D. C. Trotter, G. N. Nielson, W. Zortman, and R. D. Kekatpure, in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2011), paper OThM3.

Fisher, M.

Geis, M. W.

M. W. Geis, S. J. Spector, R. C. Williamson, and T. M. Lyszczarz, IEEE Photonics Technol. Lett. 16, 2514 (2004).
[CrossRef]

Harjanne, M.

K. Solehmainen, M. Kapulainen, M. Harjanne, and T. Aalto, IEEE Photonics Technol. Lett. 18, 2287 (2006).
[CrossRef]

Kapulainen, M.

K. Solehmainen, M. Kapulainen, M. Harjanne, and T. Aalto, IEEE Photonics Technol. Lett. 18, 2287 (2006).
[CrossRef]

Kekatpure, R. D.

C. T. DeRose, M. R. Watts, R. W. Young, D. C. Trotter, G. N. Nielson, W. Zortman, and R. D. Kekatpure, in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2011), paper OThM3.

Lentine, A. L.

M. R. Watts, W. A. Zortman, D. C. Trotter, R. W. Young, and A. L. Lentine, Opt. Express 19, 21989 (2011).
[CrossRef]

M. R. Watts, W. A. Zortman, D. C. Trotter, R. W. Young, and A. L. Lentine, IEEE J. Sel. Top. Quantum Electron. 16, 159 (2010).
[CrossRef]

M. R. Watts, D. C. Trotter, R. W. Young, and A. L. Lentine, in Proceedings of Fifth IEEE International Conference on Group IV Photonics, Vol. 46 (IEEE, 2008), pp. 4–6.

Luck, D.

M. R. Watts, W. Zortman, D. Trotter, G. Nielson, D. Luck, and R. Young, in Conference on Lasers and Electro-Optics and Quantum Electronics and Laser Science Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper CPDB10.

Lyszczarz, T. M.

M. W. Geis, S. J. Spector, R. C. Williamson, and T. M. Lyszczarz, IEEE Photonics Technol. Lett. 16, 2514 (2004).
[CrossRef]

Nielson, G.

M. R. Watts, W. Zortman, D. Trotter, G. Nielson, D. Luck, and R. Young, in Conference on Lasers and Electro-Optics and Quantum Electronics and Laser Science Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper CPDB10.

Nielson, G. N.

C. T. DeRose, M. R. Watts, R. W. Young, D. C. Trotter, G. N. Nielson, W. Zortman, and R. D. Kekatpure, in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2011), paper OThM3.

Reano, R. M.

Shaw, M. J.

Solehmainen, K.

K. Solehmainen, M. Kapulainen, M. Harjanne, and T. Aalto, IEEE Photonics Technol. Lett. 18, 2287 (2006).
[CrossRef]

Soref, R. A.

R. A. Soref, Proc. IEEE 81, 1687 (1993).
[CrossRef]

Spector, S. J.

M. W. Geis, S. J. Spector, R. C. Williamson, and T. M. Lyszczarz, IEEE Photonics Technol. Lett. 16, 2514 (2004).
[CrossRef]

Starbuck, A. L.

Sun, P.

Timurdogan, E.

Trotter, D.

M. R. Watts, W. Zortman, D. Trotter, G. Nielson, D. Luck, and R. Young, in Conference on Lasers and Electro-Optics and Quantum Electronics and Laser Science Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper CPDB10.

Trotter, D. C.

C. T. DeRose, D. C. Trotter, W. A. Zortman, A. L. Starbuck, M. Fisher, M. R. Watts, and Paul S. Davids, Opt. Express 19, 24897 (2011).
[CrossRef]

M. R. Watts, W. A. Zortman, D. C. Trotter, R. W. Young, and A. L. Lentine, Opt. Express 19, 21989 (2011).
[CrossRef]

M. R. Watts, W. A. Zortman, D. C. Trotter, R. W. Young, and A. L. Lentine, IEEE J. Sel. Top. Quantum Electron. 16, 159 (2010).
[CrossRef]

M. R. Watts, D. C. Trotter, R. W. Young, and A. L. Lentine, in Proceedings of Fifth IEEE International Conference on Group IV Photonics, Vol. 46 (IEEE, 2008), pp. 4–6.

C. T. DeRose, M. R. Watts, R. W. Young, D. C. Trotter, G. N. Nielson, W. Zortman, and R. D. Kekatpure, in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2011), paper OThM3.

Watts, M. R.

A. Biberman, M. J. Shaw, E. Timurdogan, J. B. Wright, and M. R. Watts, Opt. Lett. 37, 4236 (2012).
[CrossRef]

M. R. Watts, W. A. Zortman, D. C. Trotter, R. W. Young, and A. L. Lentine, Opt. Express 19, 21989 (2011).
[CrossRef]

C. T. DeRose, D. C. Trotter, W. A. Zortman, A. L. Starbuck, M. Fisher, M. R. Watts, and Paul S. Davids, Opt. Express 19, 24897 (2011).
[CrossRef]

M. R. Watts, Opt. Lett. 35, 3231 (2010).
[CrossRef]

M. R. Watts, W. A. Zortman, D. C. Trotter, R. W. Young, and A. L. Lentine, IEEE J. Sel. Top. Quantum Electron. 16, 159 (2010).
[CrossRef]

M. R. Watts, W. Zortman, D. Trotter, G. Nielson, D. Luck, and R. Young, in Conference on Lasers and Electro-Optics and Quantum Electronics and Laser Science Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper CPDB10.

M. R. Watts, D. C. Trotter, R. W. Young, and A. L. Lentine, in Proceedings of Fifth IEEE International Conference on Group IV Photonics, Vol. 46 (IEEE, 2008), pp. 4–6.

C. T. DeRose, M. R. Watts, R. W. Young, D. C. Trotter, G. N. Nielson, W. Zortman, and R. D. Kekatpure, in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2011), paper OThM3.

Williamson, R. C.

M. W. Geis, S. J. Spector, R. C. Williamson, and T. M. Lyszczarz, IEEE Photonics Technol. Lett. 16, 2514 (2004).
[CrossRef]

Wright, J. B.

Young, R.

M. R. Watts, W. Zortman, D. Trotter, G. Nielson, D. Luck, and R. Young, in Conference on Lasers and Electro-Optics and Quantum Electronics and Laser Science Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper CPDB10.

Young, R. W.

M. R. Watts, W. A. Zortman, D. C. Trotter, R. W. Young, and A. L. Lentine, Opt. Express 19, 21989 (2011).
[CrossRef]

M. R. Watts, W. A. Zortman, D. C. Trotter, R. W. Young, and A. L. Lentine, IEEE J. Sel. Top. Quantum Electron. 16, 159 (2010).
[CrossRef]

M. R. Watts, D. C. Trotter, R. W. Young, and A. L. Lentine, in Proceedings of Fifth IEEE International Conference on Group IV Photonics, Vol. 46 (IEEE, 2008), pp. 4–6.

C. T. DeRose, M. R. Watts, R. W. Young, D. C. Trotter, G. N. Nielson, W. Zortman, and R. D. Kekatpure, in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2011), paper OThM3.

Zortman, W.

C. T. DeRose, M. R. Watts, R. W. Young, D. C. Trotter, G. N. Nielson, W. Zortman, and R. D. Kekatpure, in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2011), paper OThM3.

M. R. Watts, W. Zortman, D. Trotter, G. Nielson, D. Luck, and R. Young, in Conference on Lasers and Electro-Optics and Quantum Electronics and Laser Science Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper CPDB10.

Zortman, W. A.

IEEE J. Sel. Top. Quantum Electron.

M. R. Watts, W. A. Zortman, D. C. Trotter, R. W. Young, and A. L. Lentine, IEEE J. Sel. Top. Quantum Electron. 16, 159 (2010).
[CrossRef]

IEEE Photonics Technol. Lett.

M. W. Geis, S. J. Spector, R. C. Williamson, and T. M. Lyszczarz, IEEE Photonics Technol. Lett. 16, 2514 (2004).
[CrossRef]

K. Solehmainen, M. Kapulainen, M. Harjanne, and T. Aalto, IEEE Photonics Technol. Lett. 18, 2287 (2006).
[CrossRef]

Opt. Express

Opt. Lett.

Proc. IEEE

R. A. Soref, Proc. IEEE 81, 1687 (1993).
[CrossRef]

Other

C. T. DeRose, M. R. Watts, R. W. Young, D. C. Trotter, G. N. Nielson, W. Zortman, and R. D. Kekatpure, in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2011), paper OThM3.

M. R. Watts, W. Zortman, D. Trotter, G. Nielson, D. Luck, and R. Young, in Conference on Lasers and Electro-Optics and Quantum Electronics and Laser Science Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper CPDB10.

M. R. Watts, D. C. Trotter, R. W. Young, and A. L. Lentine, in Proceedings of Fifth IEEE International Conference on Group IV Photonics, Vol. 46 (IEEE, 2008), pp. 4–6.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Schematics of the proposed broadband thermo-optic switch. Inset: scanning electron micrograph (SEM) of the fabricated optical switch.

Fig. 2.
Fig. 2.

3D-FDTD simulations showing (a) substantial optical loss due to the scattering of electrical contacts in a normal waveguide bend with w0=w1=0.4μm, (b) low optical loss in an adiabatic waveguide bend with w0=0.4μm, w1=1.0μm, and (c) high loss due to coupling to higher order mode in an abrupt bend with w0=0.4μm, w1=1.5μm. (d) 3D-FDTD simulations of the optical loss per π bend at different center width w1 of the bend. At narrower w1, the loss is dominated by scattering loss; at wider w1, the loss is caused by coupling to higher order mode.

Fig. 3.
Fig. 3.

(a) FEM thermal simulation of the thermo-optic switch at steady state with applied voltage. (b) Transient thermal simulation showing the temperature change (blue) at the center of the bend when applying a pulsed heating power (red) on the thermo-optic switch, with a simulated heating time constant of τheat=1.1μs and a cooling time constant of τcool=1.5μs.

Fig. 4.
Fig. 4.

(a) Time-domain measurement of the fabricated thermo-optic switch, showing a low electrical power consumption of 12.7 mW to turn on the switch, with a cooling time constant of τcool=2.4μs and a heating time constant of τheat=2.2μs. The vertical axis of the optical power is in linear scale. (b) Frequency domain measurement of the switch in the cross port showing a bandwidth of 70 nm and an extinction of >20dB.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

FOM=Pπ·τ(mW·μs),

Metrics