Abstract

A two-layer guide-mode resonance structure made of shallow gratings deposited on the Kerr active guiding layer is used to realize high-quality Fano resonance and step-like transmission. The step-like transmission is designed to work between the perfect transmission peak and the dip of the asymmetrical Fano spectrum. It is demonstrated that the steep transition in the transmission should be attributed to the strong field localization in cases of both high and low transmission states.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. U. Fano, Phys. Rev. 124, 1866 (1961).
    [CrossRef]
  2. A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, Rev. Mod. Phys. 82, 2257 (2010).
    [CrossRef]
  3. V. Lousse, and J. P. Vigneron, Phys. Rev. B 69, 155106 (2004).
    [CrossRef]
  4. A. E. Miroshnichenko, S. F. Mingaleev, S. Flach, and Y. S. Kivshar, Phys. Rev. E 71, 036626 (2005).
    [CrossRef]
  5. G. D’ Aguanno, D. de Ceglia, N. Mattiucci, and M. J. Bloemer, Opt. Lett. 36, 1984 (2011).
    [CrossRef]
  6. N. Mattiucci, G. D’Aguanno, and M. J. Bloemer, Opt. Lett. 37, 121 (2012).
    [CrossRef]
  7. B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, Nat. Mater. 9, 707 (2010).
    [CrossRef]
  8. A. Hessel and A. A. Oliner, Appl. Opt. 4, 1275 (1965).
    [CrossRef]
  9. H. M. Gibbs, Optical Bistability: Controlling Light by Light (Academic, 1985).
  10. A. Husakou and J. Herrmann, Phys. Rev. Lett. 99, 127402 (2007).
    [CrossRef]
  11. X.-B. Kang, T.-H. Tian, and Z.-G. Wang, Chin. Phys. Lett. 28, 094206 (2011).
    [CrossRef]
  12. S. Fan and J. D. Joannaopoulos, Phys. Rev. B 65, 235112 (2002).
    [CrossRef]
  13. N. Hô, J. M. Laniel, R. Valée, and A. Villeneuve, Opt. Lett. 28, 965 (2003).
    [CrossRef]
  14. P. Sheng, R. S. Stepleman, and P. N. Sanda, Phys. Rev. B 26, 2907 (1982).
    [CrossRef]

2012

2011

G. D’ Aguanno, D. de Ceglia, N. Mattiucci, and M. J. Bloemer, Opt. Lett. 36, 1984 (2011).
[CrossRef]

X.-B. Kang, T.-H. Tian, and Z.-G. Wang, Chin. Phys. Lett. 28, 094206 (2011).
[CrossRef]

2010

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, Nat. Mater. 9, 707 (2010).
[CrossRef]

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, Rev. Mod. Phys. 82, 2257 (2010).
[CrossRef]

2007

A. Husakou and J. Herrmann, Phys. Rev. Lett. 99, 127402 (2007).
[CrossRef]

2005

A. E. Miroshnichenko, S. F. Mingaleev, S. Flach, and Y. S. Kivshar, Phys. Rev. E 71, 036626 (2005).
[CrossRef]

2004

V. Lousse, and J. P. Vigneron, Phys. Rev. B 69, 155106 (2004).
[CrossRef]

2003

2002

S. Fan and J. D. Joannaopoulos, Phys. Rev. B 65, 235112 (2002).
[CrossRef]

1982

P. Sheng, R. S. Stepleman, and P. N. Sanda, Phys. Rev. B 26, 2907 (1982).
[CrossRef]

1965

1961

U. Fano, Phys. Rev. 124, 1866 (1961).
[CrossRef]

Bloemer, M. J.

Chong, C. T.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, Nat. Mater. 9, 707 (2010).
[CrossRef]

D’ Aguanno, G.

D’Aguanno, G.

de Ceglia, D.

Fan, S.

S. Fan and J. D. Joannaopoulos, Phys. Rev. B 65, 235112 (2002).
[CrossRef]

Fano, U.

U. Fano, Phys. Rev. 124, 1866 (1961).
[CrossRef]

Flach, S.

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, Rev. Mod. Phys. 82, 2257 (2010).
[CrossRef]

A. E. Miroshnichenko, S. F. Mingaleev, S. Flach, and Y. S. Kivshar, Phys. Rev. E 71, 036626 (2005).
[CrossRef]

Gibbs, H. M.

H. M. Gibbs, Optical Bistability: Controlling Light by Light (Academic, 1985).

Giessen, H.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, Nat. Mater. 9, 707 (2010).
[CrossRef]

Halas, N. J.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, Nat. Mater. 9, 707 (2010).
[CrossRef]

Herrmann, J.

A. Husakou and J. Herrmann, Phys. Rev. Lett. 99, 127402 (2007).
[CrossRef]

Hessel, A.

Hô, N.

Husakou, A.

A. Husakou and J. Herrmann, Phys. Rev. Lett. 99, 127402 (2007).
[CrossRef]

Joannaopoulos, J. D.

S. Fan and J. D. Joannaopoulos, Phys. Rev. B 65, 235112 (2002).
[CrossRef]

Kang, X.-B.

X.-B. Kang, T.-H. Tian, and Z.-G. Wang, Chin. Phys. Lett. 28, 094206 (2011).
[CrossRef]

Kivshar, Y. S.

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, Rev. Mod. Phys. 82, 2257 (2010).
[CrossRef]

A. E. Miroshnichenko, S. F. Mingaleev, S. Flach, and Y. S. Kivshar, Phys. Rev. E 71, 036626 (2005).
[CrossRef]

Laniel, J. M.

Lousse, V.

V. Lousse, and J. P. Vigneron, Phys. Rev. B 69, 155106 (2004).
[CrossRef]

Luk’yanchuk, B.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, Nat. Mater. 9, 707 (2010).
[CrossRef]

Maier, S. A.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, Nat. Mater. 9, 707 (2010).
[CrossRef]

Mattiucci, N.

Mingaleev, S. F.

A. E. Miroshnichenko, S. F. Mingaleev, S. Flach, and Y. S. Kivshar, Phys. Rev. E 71, 036626 (2005).
[CrossRef]

Miroshnichenko, A. E.

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, Rev. Mod. Phys. 82, 2257 (2010).
[CrossRef]

A. E. Miroshnichenko, S. F. Mingaleev, S. Flach, and Y. S. Kivshar, Phys. Rev. E 71, 036626 (2005).
[CrossRef]

Nordlander, P.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, Nat. Mater. 9, 707 (2010).
[CrossRef]

Oliner, A. A.

Sanda, P. N.

P. Sheng, R. S. Stepleman, and P. N. Sanda, Phys. Rev. B 26, 2907 (1982).
[CrossRef]

Sheng, P.

P. Sheng, R. S. Stepleman, and P. N. Sanda, Phys. Rev. B 26, 2907 (1982).
[CrossRef]

Stepleman, R. S.

P. Sheng, R. S. Stepleman, and P. N. Sanda, Phys. Rev. B 26, 2907 (1982).
[CrossRef]

Tian, T.-H.

X.-B. Kang, T.-H. Tian, and Z.-G. Wang, Chin. Phys. Lett. 28, 094206 (2011).
[CrossRef]

Valée, R.

Vigneron, J. P.

V. Lousse, and J. P. Vigneron, Phys. Rev. B 69, 155106 (2004).
[CrossRef]

Villeneuve, A.

Wang, Z.-G.

X.-B. Kang, T.-H. Tian, and Z.-G. Wang, Chin. Phys. Lett. 28, 094206 (2011).
[CrossRef]

Zheludev, N. I.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, Nat. Mater. 9, 707 (2010).
[CrossRef]

Appl. Opt.

Chin. Phys. Lett.

X.-B. Kang, T.-H. Tian, and Z.-G. Wang, Chin. Phys. Lett. 28, 094206 (2011).
[CrossRef]

Nat. Mater.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, Nat. Mater. 9, 707 (2010).
[CrossRef]

Opt. Lett.

Phys. Rev.

U. Fano, Phys. Rev. 124, 1866 (1961).
[CrossRef]

Phys. Rev. B

V. Lousse, and J. P. Vigneron, Phys. Rev. B 69, 155106 (2004).
[CrossRef]

P. Sheng, R. S. Stepleman, and P. N. Sanda, Phys. Rev. B 26, 2907 (1982).
[CrossRef]

S. Fan and J. D. Joannaopoulos, Phys. Rev. B 65, 235112 (2002).
[CrossRef]

Phys. Rev. E

A. E. Miroshnichenko, S. F. Mingaleev, S. Flach, and Y. S. Kivshar, Phys. Rev. E 71, 036626 (2005).
[CrossRef]

Phys. Rev. Lett.

A. Husakou and J. Herrmann, Phys. Rev. Lett. 99, 127402 (2007).
[CrossRef]

Rev. Mod. Phys.

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, Rev. Mod. Phys. 82, 2257 (2010).
[CrossRef]

Other

H. M. Gibbs, Optical Bistability: Controlling Light by Light (Academic, 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

(a) Two-layer guide-mode resonance structure. (b) Transmission as a function of guiding layer thickness. There are two high-quality resonances approximately at hc=1142nm and hc=2536nm.

Fig. 2.
Fig. 2.

(a) Transmission and eigenmode excitation at the guiding layer end of the gratings (z=118nm). (b) Field distribution inside the structure at the center of the resonance. The amplitude of the incident wave is normalized to 1.

Fig. 3.
Fig. 3.

Nonlinear transmission of the structure. The dashed curve marked with upward red triangle is for the case of illumination with ascending intensity. The dotted curve with green downward triangle is that for descending intensity. The inset is the enlarged view of the intensity range between 0.33 and 0.37MW/cm2.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

cos(kinΛ)=(kLnH2kHnL2+kHnL2kLnH2)sin(kLdL)sin(kHdH)+cos(kLdL)cos(kHdH),

Metrics