Abstract

A polarimetric heterodyning fiber grating laser is proposed to sense a magnetic field. When a magnetic field is parallel to the fiber grating laser, a circular birefringence is induced into the laser cavity. An elliptical birefringence results due to the circular birefringence and the intrinsic linear birefringence of the laser cavity. The elliptical birefringence is translated to the beat note frequency between the two orthogonally polarized laser outputs after photodetection. Confirmed by experiment results, it shows that the beat note frequency shift is proportional to the square of the magnetic field magnitude. Because the fiber laser is as short as less than 2 cm, a miniature magnetic field sensor is then demonstrated in principle.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. E. Lenz, Proc. IEEE 78, 973 (1990).
    [CrossRef]
  2. M. Yang, J. Dai, C. Zhou, and D. Jiang, Opt. Express 17, 20777 (2009).
    [CrossRef]
  3. C.-L. Tien, C.-C. Hwang, H.-W. Chen, W. F. Liu, and S.-W. Lin, IEEE Trans. Magn. 42, 3285 (2006).
    [CrossRef]
  4. B.-O. Guan and S.-N. Wang, IEEE Photon. Technol. Lett. 22, 230 (2010).
    [CrossRef]
  5. A. D. Kersey and D. A. Jackson, J. Lightwave Technol. 4, 640 (1986).
    [CrossRef]
  6. L. Sun, S. Jiang, and J. R. Marciante, Opt. Express 18, 5407 (2010).
    [CrossRef]
  7. J. Noda, T. Hosaka, Y. Sasaki, and R. Ulrich, Electron. Lett. 20, 906 (1984).
    [CrossRef]
  8. B.-O. Guan, L. Jin, Y. Zhang, and H.-Y. Tam, J. Lightwave Technol. 30, 1097 (2012).
    [CrossRef]
  9. J. S. Park, S. H. Yun, S. J. Ahn, and B. Y. Kim, Opt. Lett. 21, 1029 (1996).
    [CrossRef]
  10. M. L. Lee, J. S. Park, W. L. Lee, S. H. Yun, Y. H. Lee, and B. Y. Kim, Meas. Sci. Technol. 9, 952 (1998).
    [CrossRef]
  11. R. Ulrich and A. Simon, Appl. Opt. 18, 2241 (1979).
    [CrossRef]
  12. M. J. Freiser, IEEE Trans. Magn. 4, 152 (1968).
    [CrossRef]
  13. M.-P. Li, L. Jin, and B.-O. Guan, Proc. SPIE 8421, 84211N (2012).
    [CrossRef]

2012 (2)

2010 (2)

L. Sun, S. Jiang, and J. R. Marciante, Opt. Express 18, 5407 (2010).
[CrossRef]

B.-O. Guan and S.-N. Wang, IEEE Photon. Technol. Lett. 22, 230 (2010).
[CrossRef]

2009 (1)

2006 (1)

C.-L. Tien, C.-C. Hwang, H.-W. Chen, W. F. Liu, and S.-W. Lin, IEEE Trans. Magn. 42, 3285 (2006).
[CrossRef]

1998 (1)

M. L. Lee, J. S. Park, W. L. Lee, S. H. Yun, Y. H. Lee, and B. Y. Kim, Meas. Sci. Technol. 9, 952 (1998).
[CrossRef]

1996 (1)

1990 (1)

J. E. Lenz, Proc. IEEE 78, 973 (1990).
[CrossRef]

1986 (1)

A. D. Kersey and D. A. Jackson, J. Lightwave Technol. 4, 640 (1986).
[CrossRef]

1984 (1)

J. Noda, T. Hosaka, Y. Sasaki, and R. Ulrich, Electron. Lett. 20, 906 (1984).
[CrossRef]

1979 (1)

1968 (1)

M. J. Freiser, IEEE Trans. Magn. 4, 152 (1968).
[CrossRef]

Ahn, S. J.

Chen, H.-W.

C.-L. Tien, C.-C. Hwang, H.-W. Chen, W. F. Liu, and S.-W. Lin, IEEE Trans. Magn. 42, 3285 (2006).
[CrossRef]

Dai, J.

Freiser, M. J.

M. J. Freiser, IEEE Trans. Magn. 4, 152 (1968).
[CrossRef]

Guan, B.-O.

M.-P. Li, L. Jin, and B.-O. Guan, Proc. SPIE 8421, 84211N (2012).
[CrossRef]

B.-O. Guan, L. Jin, Y. Zhang, and H.-Y. Tam, J. Lightwave Technol. 30, 1097 (2012).
[CrossRef]

B.-O. Guan and S.-N. Wang, IEEE Photon. Technol. Lett. 22, 230 (2010).
[CrossRef]

Hosaka, T.

J. Noda, T. Hosaka, Y. Sasaki, and R. Ulrich, Electron. Lett. 20, 906 (1984).
[CrossRef]

Hwang, C.-C.

C.-L. Tien, C.-C. Hwang, H.-W. Chen, W. F. Liu, and S.-W. Lin, IEEE Trans. Magn. 42, 3285 (2006).
[CrossRef]

Jackson, D. A.

A. D. Kersey and D. A. Jackson, J. Lightwave Technol. 4, 640 (1986).
[CrossRef]

Jiang, D.

Jiang, S.

Jin, L.

Kersey, A. D.

A. D. Kersey and D. A. Jackson, J. Lightwave Technol. 4, 640 (1986).
[CrossRef]

Kim, B. Y.

M. L. Lee, J. S. Park, W. L. Lee, S. H. Yun, Y. H. Lee, and B. Y. Kim, Meas. Sci. Technol. 9, 952 (1998).
[CrossRef]

J. S. Park, S. H. Yun, S. J. Ahn, and B. Y. Kim, Opt. Lett. 21, 1029 (1996).
[CrossRef]

Lee, M. L.

M. L. Lee, J. S. Park, W. L. Lee, S. H. Yun, Y. H. Lee, and B. Y. Kim, Meas. Sci. Technol. 9, 952 (1998).
[CrossRef]

Lee, W. L.

M. L. Lee, J. S. Park, W. L. Lee, S. H. Yun, Y. H. Lee, and B. Y. Kim, Meas. Sci. Technol. 9, 952 (1998).
[CrossRef]

Lee, Y. H.

M. L. Lee, J. S. Park, W. L. Lee, S. H. Yun, Y. H. Lee, and B. Y. Kim, Meas. Sci. Technol. 9, 952 (1998).
[CrossRef]

Lenz, J. E.

J. E. Lenz, Proc. IEEE 78, 973 (1990).
[CrossRef]

Li, M.-P.

M.-P. Li, L. Jin, and B.-O. Guan, Proc. SPIE 8421, 84211N (2012).
[CrossRef]

Lin, S.-W.

C.-L. Tien, C.-C. Hwang, H.-W. Chen, W. F. Liu, and S.-W. Lin, IEEE Trans. Magn. 42, 3285 (2006).
[CrossRef]

Liu, W. F.

C.-L. Tien, C.-C. Hwang, H.-W. Chen, W. F. Liu, and S.-W. Lin, IEEE Trans. Magn. 42, 3285 (2006).
[CrossRef]

Marciante, J. R.

Noda, J.

J. Noda, T. Hosaka, Y. Sasaki, and R. Ulrich, Electron. Lett. 20, 906 (1984).
[CrossRef]

Park, J. S.

M. L. Lee, J. S. Park, W. L. Lee, S. H. Yun, Y. H. Lee, and B. Y. Kim, Meas. Sci. Technol. 9, 952 (1998).
[CrossRef]

J. S. Park, S. H. Yun, S. J. Ahn, and B. Y. Kim, Opt. Lett. 21, 1029 (1996).
[CrossRef]

Sasaki, Y.

J. Noda, T. Hosaka, Y. Sasaki, and R. Ulrich, Electron. Lett. 20, 906 (1984).
[CrossRef]

Simon, A.

Sun, L.

Tam, H.-Y.

Tien, C.-L.

C.-L. Tien, C.-C. Hwang, H.-W. Chen, W. F. Liu, and S.-W. Lin, IEEE Trans. Magn. 42, 3285 (2006).
[CrossRef]

Ulrich, R.

J. Noda, T. Hosaka, Y. Sasaki, and R. Ulrich, Electron. Lett. 20, 906 (1984).
[CrossRef]

R. Ulrich and A. Simon, Appl. Opt. 18, 2241 (1979).
[CrossRef]

Wang, S.-N.

B.-O. Guan and S.-N. Wang, IEEE Photon. Technol. Lett. 22, 230 (2010).
[CrossRef]

Yang, M.

Yun, S. H.

M. L. Lee, J. S. Park, W. L. Lee, S. H. Yun, Y. H. Lee, and B. Y. Kim, Meas. Sci. Technol. 9, 952 (1998).
[CrossRef]

J. S. Park, S. H. Yun, S. J. Ahn, and B. Y. Kim, Opt. Lett. 21, 1029 (1996).
[CrossRef]

Zhang, Y.

Zhou, C.

Appl. Opt. (1)

Electron. Lett. (1)

J. Noda, T. Hosaka, Y. Sasaki, and R. Ulrich, Electron. Lett. 20, 906 (1984).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

B.-O. Guan and S.-N. Wang, IEEE Photon. Technol. Lett. 22, 230 (2010).
[CrossRef]

IEEE Trans. Magn. (2)

C.-L. Tien, C.-C. Hwang, H.-W. Chen, W. F. Liu, and S.-W. Lin, IEEE Trans. Magn. 42, 3285 (2006).
[CrossRef]

M. J. Freiser, IEEE Trans. Magn. 4, 152 (1968).
[CrossRef]

J. Lightwave Technol. (2)

B.-O. Guan, L. Jin, Y. Zhang, and H.-Y. Tam, J. Lightwave Technol. 30, 1097 (2012).
[CrossRef]

A. D. Kersey and D. A. Jackson, J. Lightwave Technol. 4, 640 (1986).
[CrossRef]

Meas. Sci. Technol. (1)

M. L. Lee, J. S. Park, W. L. Lee, S. H. Yun, Y. H. Lee, and B. Y. Kim, Meas. Sci. Technol. 9, 952 (1998).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Proc. IEEE (1)

J. E. Lenz, Proc. IEEE 78, 973 (1990).
[CrossRef]

Proc. SPIE (1)

M.-P. Li, L. Jin, and B.-O. Guan, Proc. SPIE 8421, 84211N (2012).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Schematic setup for magnetic field sensor based on an orthogonally polarized dual-frequency fiber grating laser. ISO, isolator; WDM, wavelength division multiplexer; PC, polarization controller; PD, photodetector.

Fig. 2.
Fig. 2.

Measured beat frequency with a 4500 G magnetic field parallel to the fiber laser and then removed. A moving average over 100 measurements is plotted as the short dotted curve.

Fig. 3.
Fig. 3.

Measured beat frequency with a 4500 G magnetic field perpendicular to the fiber laser and then removed. A moving average over 100 measurements is plotted as the short dotted curve.

Fig. 4.
Fig. 4.

Measured beat frequency shift for various applied magnetic field magnitudes. A calculated curve for the measured results is also plotted as the solid curve.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

Δν=cn0λ0B,
Ω=α2+β2.
Ωβ+12βα2.
Δν12πcn0(β+12βα2).
θF=VHL,
α=2VH.
Δν12πcn0[β+2β(VH)2].
Δν12πcn0(VH+12VHβ2).

Metrics