Abstract

Laser-induced plasmas in gases are known to generate gaseous jets in the postplasma gas plume. The gaseous jet typically develops toward the laser source, and the experiments presented here show, for the first time to our knowledge, that, under certain conditions, these jets can develop in the opposite direction or may not form at all. The data suggest that this is related to the ratio between the energy absorbed in the plasma and the threshold breakdown energy, effectively leading to multiple plasma initiation sites in the focal waist.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. G. Parigger, in Laser Induced Breakdown Spectroscopy Fundamentals and Applications, A. W. Miziolek, V. Palleschi, and I. Schechter, eds. (Cambridge University, 2006), Chap. 4.
  2. P. Chylek, M. A. Jarzembski, V. Srivastava, and R. G. Rinnick, Appl. Opt. 29, 2303 (1990).
    [CrossRef]
  3. C. L. M. Ireland, J. Phys. D 7, L179 (1974).
    [CrossRef]
  4. A. J. Alcock, K. Kato, and M. C. Richardson, Opt. Commun. 6, 342 (1972).
    [CrossRef]
  5. T. X. Phuoc, Opt. Lasers Eng. 44, 351 (2006).
    [CrossRef]
  6. Y. L. Chen, J. W. L. Lewis, and C. G. Parigger, J. Quant. Spectrosc. Radiat. Transfer 67, 91 (2000).
    [CrossRef]
  7. M. Lackner, S. Charareh, F. Winter, K. F. Iskra, D. Rüdisser, T. Neger, H. Kopecek, and E. Wintner, Opt. Express 12, 4546 (2004).
    [CrossRef]
  8. D. Bradley, C. G. W. Sheppard, I. Suardjaja, and R. Woolley, Combust. Flame 138, 55 (2004).
    [CrossRef]
  9. M. H. Morsy and S. H. Chung, Proc. Combust. Inst. 29, 1613 (2002).
    [CrossRef]
  10. I. G. Dors and C. G. Parigger, Appl. Opt. 42, 5978 (2003).
    [CrossRef]
  11. C. G. Morgan, Rep. Prog. Phys. 38, 621 (1975).
    [CrossRef]

2006

T. X. Phuoc, Opt. Lasers Eng. 44, 351 (2006).
[CrossRef]

2004

2003

2002

M. H. Morsy and S. H. Chung, Proc. Combust. Inst. 29, 1613 (2002).
[CrossRef]

2000

Y. L. Chen, J. W. L. Lewis, and C. G. Parigger, J. Quant. Spectrosc. Radiat. Transfer 67, 91 (2000).
[CrossRef]

1990

1975

C. G. Morgan, Rep. Prog. Phys. 38, 621 (1975).
[CrossRef]

1974

C. L. M. Ireland, J. Phys. D 7, L179 (1974).
[CrossRef]

1972

A. J. Alcock, K. Kato, and M. C. Richardson, Opt. Commun. 6, 342 (1972).
[CrossRef]

Alcock, A. J.

A. J. Alcock, K. Kato, and M. C. Richardson, Opt. Commun. 6, 342 (1972).
[CrossRef]

Bradley, D.

D. Bradley, C. G. W. Sheppard, I. Suardjaja, and R. Woolley, Combust. Flame 138, 55 (2004).
[CrossRef]

Charareh, S.

Chen, Y. L.

Y. L. Chen, J. W. L. Lewis, and C. G. Parigger, J. Quant. Spectrosc. Radiat. Transfer 67, 91 (2000).
[CrossRef]

Chung, S. H.

M. H. Morsy and S. H. Chung, Proc. Combust. Inst. 29, 1613 (2002).
[CrossRef]

Chylek, P.

Dors, I. G.

Ireland, C. L. M.

C. L. M. Ireland, J. Phys. D 7, L179 (1974).
[CrossRef]

Iskra, K. F.

Jarzembski, M. A.

Kato, K.

A. J. Alcock, K. Kato, and M. C. Richardson, Opt. Commun. 6, 342 (1972).
[CrossRef]

Kopecek, H.

Lackner, M.

Lewis, J. W. L.

Y. L. Chen, J. W. L. Lewis, and C. G. Parigger, J. Quant. Spectrosc. Radiat. Transfer 67, 91 (2000).
[CrossRef]

Morgan, C. G.

C. G. Morgan, Rep. Prog. Phys. 38, 621 (1975).
[CrossRef]

Morsy, M. H.

M. H. Morsy and S. H. Chung, Proc. Combust. Inst. 29, 1613 (2002).
[CrossRef]

Neger, T.

Parigger, C. G.

I. G. Dors and C. G. Parigger, Appl. Opt. 42, 5978 (2003).
[CrossRef]

Y. L. Chen, J. W. L. Lewis, and C. G. Parigger, J. Quant. Spectrosc. Radiat. Transfer 67, 91 (2000).
[CrossRef]

C. G. Parigger, in Laser Induced Breakdown Spectroscopy Fundamentals and Applications, A. W. Miziolek, V. Palleschi, and I. Schechter, eds. (Cambridge University, 2006), Chap. 4.

Phuoc, T. X.

T. X. Phuoc, Opt. Lasers Eng. 44, 351 (2006).
[CrossRef]

Richardson, M. C.

A. J. Alcock, K. Kato, and M. C. Richardson, Opt. Commun. 6, 342 (1972).
[CrossRef]

Rinnick, R. G.

Rüdisser, D.

Sheppard, C. G. W.

D. Bradley, C. G. W. Sheppard, I. Suardjaja, and R. Woolley, Combust. Flame 138, 55 (2004).
[CrossRef]

Srivastava, V.

Suardjaja, I.

D. Bradley, C. G. W. Sheppard, I. Suardjaja, and R. Woolley, Combust. Flame 138, 55 (2004).
[CrossRef]

Winter, F.

Wintner, E.

Woolley, R.

D. Bradley, C. G. W. Sheppard, I. Suardjaja, and R. Woolley, Combust. Flame 138, 55 (2004).
[CrossRef]

Appl. Opt.

Combust. Flame

D. Bradley, C. G. W. Sheppard, I. Suardjaja, and R. Woolley, Combust. Flame 138, 55 (2004).
[CrossRef]

J. Phys. D

C. L. M. Ireland, J. Phys. D 7, L179 (1974).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer

Y. L. Chen, J. W. L. Lewis, and C. G. Parigger, J. Quant. Spectrosc. Radiat. Transfer 67, 91 (2000).
[CrossRef]

Opt. Commun.

A. J. Alcock, K. Kato, and M. C. Richardson, Opt. Commun. 6, 342 (1972).
[CrossRef]

Opt. Express

Opt. Lasers Eng.

T. X. Phuoc, Opt. Lasers Eng. 44, 351 (2006).
[CrossRef]

Proc. Combust. Inst.

M. H. Morsy and S. H. Chung, Proc. Combust. Inst. 29, 1613 (2002).
[CrossRef]

Rep. Prog. Phys.

C. G. Morgan, Rep. Prog. Phys. 38, 621 (1975).
[CrossRef]

Other

C. G. Parigger, in Laser Induced Breakdown Spectroscopy Fundamentals and Applications, A. W. Miziolek, V. Palleschi, and I. Schechter, eds. (Cambridge University, 2006), Chap. 4.

Supplementary Material (10)

» Media 1: AVI (6172 KB)     
» Media 2: AVI (7445 KB)     
» Media 3: AVI (7447 KB)     
» Media 4: AVI (7449 KB)     
» Media 5: AVI (7507 KB)     
» Media 6: AVI (7498 KB)     
» Media 7: AVI (7456 KB)     
» Media 8: AVI (7506 KB)     
» Media 9: AVI (7509 KB)     
» Media 10: PDF (283 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Schlieren images of the postplasma gas plume evolution of an LIP generated in air at ambient pressure. The focused laser beam is impinging from the right-hand side, and the jet propagates toward the anterior region (Media 1).

Fig. 2.
Fig. 2.

Experimental arrangement.

Fig. 3.
Fig. 3.

Relative frequency of jet propagating toward (+) or away () from the laser source for a laser energy of 465 mJ for H2, Ar, and air. The table shows how many times, out of eight experiments, the jet developed toward or away from the laser.

Fig. 4.
Fig. 4.

Gas plume evolution of LIP sparks s1–s8 generated in air at 11 atm of pressure. The laser beam is impinging from the right-hand side (Media 210).

Fig. 5.
Fig. 5.

Plasma initiation sites in the focal waist. Images extracted from experiments conducted in H2 for pressures >7atm.

Fig. 6.
Fig. 6.

Early recordings (first recorded frame) of sequences s4, s5, s7, and s8 from Fig. 4.

Metrics