Abstract

We measure the number of atoms N trapped in a conventional vapor-cell magneto-optic trap (MOT) using beams that have a diameter d in the range 1–5 mm. We show that the Nd3.6 scaling law observed for larger MOTs is a robust approximation for optimized MOTs with beam diameters as small as 3 mm. For smaller beams, the description of the scaling depends on how d is defined. The most consistent picture of the scaling is obtained when d is defined as the diameter where the intensity profile of the trapping beams decreases to the saturation intensity. Using this definition, N scales as d6 for d<2.3mm but, at larger d, N still scales as d3.6.

Full Article  |  PDF Article
OSA Recommended Articles
Magneto-optical trap loading rate dependence on trap depth and vapor density

Magnus Haw, Nathan Evetts, Will Gunton, Janelle Van Dongen, James L. Booth, and Kirk W. Madison
J. Opt. Soc. Am. B 29(3) 475-483 (2012)

Deceleration, trapping, and two-photon cooling of calcium atoms

Reinaldo L. Cavasso Filho, Wictor C. Magno, Daniela A. Manoel, Artemio Scalabrin, Daniel Pereira, and Flavio C. Cruz
J. Opt. Soc. Am. B 20(5) 994-1002 (2003)

Quenched narrow-line second- and third-stage laser cooling of 40Ca

E. Anne Curtis, Christopher W. Oates, and Leo Hollberg
J. Opt. Soc. Am. B 20(5) 977-984 (2003)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (1)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription