Abstract

This Letter presents a technique for subdiffraction limit imaging termed Bessel beam microscopy (BBM). By placing a lens in series with an axicon in the optical path of a microscope, the diffraction-limited resolution of the base microscope is improved by one third. This improvement is demonstrated experimentally by resolving individual subdiffraction limit fluorescent beads in a close-pack arrangement. The behavior of the BBM system is explored using angular diffraction simulations, demonstrating the possibility of resolving features spaced as little as 110 nm apart when viewed with a 100×1.4NA objective. Unique among super-resolution techniques, BBM acquires subdiffraction limit information in a single image with broadband unstructured illumination using only static geometric optics placed between the microscope and camera.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. A. A. Neil, R. Juskaitus, and T. Wilson, Opt. Lett. 22, 1905 (2003).
    [CrossRef]
  2. M. G. L. Gustafsson, J. Microsc. 198, 82 (2000).
    [CrossRef]
  3. M. A. A. Neil, R. Juškaitis, T. Wilson, Z. J. Laczik, and V. Sarafis, Opt. Lett. 25, 245 (2000).
    [CrossRef]
  4. T. R. M. Sales and G. M. Morris, J. Opt. Soc. Am. A 14, 1637 (1997).
    [CrossRef]
  5. S. W. Hell, Science 316, 1153 (2007).
    [CrossRef]
  6. A. Vainrub, O. Pustovyy, and V. Vodyanoy, Opt. Lett. 31, 2855 (2006).
    [CrossRef]
  7. T. R. Sales and G. M. Morris, Opt. Lett. 22, 582 (1997).
    [CrossRef]
  8. J. Durnin and J. J. Miceli, Phys. Rev. Lett. 58, 1499 (1987).
    [CrossRef]
  9. C. Snoeyink and S. Wereley, Opt. Lett. 37, 2058 (2012).
    [CrossRef]
  10. J. Goodman, Introduction to Fourier Optics (Roberts, 2004).
  11. C. J. R. Sheppard and A. Choudhury, Appl. Opt. 43, 4322 (2004).
    [CrossRef]
  12. M. Born and E. Wolf, Principles of Optics (Cambridge University, 1999).
  13. C. D. Meinhart and S. T. Wereley, Meas. Sci. Technol. 14, 1047 (2003).
    [CrossRef]
  14. N. Delen and B. Hooker, J. Opt. Soc. Am. A 15, 857 (1998).
    [CrossRef]

2012 (1)

2007 (1)

S. W. Hell, Science 316, 1153 (2007).
[CrossRef]

2006 (1)

2004 (1)

2003 (2)

C. D. Meinhart and S. T. Wereley, Meas. Sci. Technol. 14, 1047 (2003).
[CrossRef]

M. A. A. Neil, R. Juskaitus, and T. Wilson, Opt. Lett. 22, 1905 (2003).
[CrossRef]

2000 (2)

1998 (1)

1997 (2)

1987 (1)

J. Durnin and J. J. Miceli, Phys. Rev. Lett. 58, 1499 (1987).
[CrossRef]

Born, M.

M. Born and E. Wolf, Principles of Optics (Cambridge University, 1999).

Choudhury, A.

Delen, N.

Durnin, J.

J. Durnin and J. J. Miceli, Phys. Rev. Lett. 58, 1499 (1987).
[CrossRef]

Goodman, J.

J. Goodman, Introduction to Fourier Optics (Roberts, 2004).

Gustafsson, M. G. L.

M. G. L. Gustafsson, J. Microsc. 198, 82 (2000).
[CrossRef]

Hell, S. W.

S. W. Hell, Science 316, 1153 (2007).
[CrossRef]

Hooker, B.

Juškaitis, R.

Juskaitus, R.

Laczik, Z. J.

Meinhart, C. D.

C. D. Meinhart and S. T. Wereley, Meas. Sci. Technol. 14, 1047 (2003).
[CrossRef]

Miceli, J. J.

J. Durnin and J. J. Miceli, Phys. Rev. Lett. 58, 1499 (1987).
[CrossRef]

Morris, G. M.

Neil, M. A. A.

Pustovyy, O.

Sales, T. R.

Sales, T. R. M.

Sarafis, V.

Sheppard, C. J. R.

Snoeyink, C.

Vainrub, A.

Vodyanoy, V.

Wereley, S.

Wereley, S. T.

C. D. Meinhart and S. T. Wereley, Meas. Sci. Technol. 14, 1047 (2003).
[CrossRef]

Wilson, T.

Wolf, E.

M. Born and E. Wolf, Principles of Optics (Cambridge University, 1999).

Appl. Opt. (1)

J. Microsc. (1)

M. G. L. Gustafsson, J. Microsc. 198, 82 (2000).
[CrossRef]

J. Opt. Soc. Am. A (2)

Meas. Sci. Technol. (1)

C. D. Meinhart and S. T. Wereley, Meas. Sci. Technol. 14, 1047 (2003).
[CrossRef]

Opt. Lett. (5)

Phys. Rev. Lett. (1)

J. Durnin and J. J. Miceli, Phys. Rev. Lett. 58, 1499 (1987).
[CrossRef]

Science (1)

S. W. Hell, Science 316, 1153 (2007).
[CrossRef]

Other (2)

J. Goodman, Introduction to Fourier Optics (Roberts, 2004).

M. Born and E. Wolf, Principles of Optics (Cambridge University, 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Schematic of basic BBM setup. A convex lens is its focal length away from the image plane. Immediately following is an axicon, then space for the Bessel beam to propagate, and finally a camera.

Fig. 2.
Fig. 2.

Images of 500 nm fluorescent beads imaged with a 40×0.6NA objective microscope both (a) without and (b) with the BBM attachment.

Fig. 3.
Fig. 3.

Power spectrum plot of images shown in Figs. 2(a) (dashed) and 2(b) (solid).

Fig. 4.
Fig. 4.

Ratio of peak intensity to midpoint intensity for point sources emitting at 400 nm as a function of separation distance as imaged by a 100×1.4NA microscope both with (solid) and without (dashed) the BBM attachment.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

I(rc)J02(s),
s0=2.401λD2πα(n1).
Cmax=raDα(n1),
dmfobj=diC,
dm=0.38λra/fobj.
dm=0.38λNA.

Metrics