Abstract

We report a step toward scanning endomicroscopy without distal optics. The focusing of the beam at the distal end of a fiber bundle is achieved by imposing a parabolic phase profile across the exit face with the aid of a spatial light modulator. We achieve video-rate images by galvanometric scanning of the phase tilt at the proximal end. The approach is made possible by the bundle, designed to have very low coupling between cores.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. F. Elahi and T. D. Wang, J. Biomed. Opt. 4, 471 (2011).
    [CrossRef]
  2. H. Bao and M. Gu, Opt. Express 17, 10098 (2009).
    [CrossRef]
  3. I. N. Papadopoulos, S. Farahi, C. Moser, and D. Psaltis, Opt. Express 20, 10583 (2012).
    [CrossRef]
  4. T. Cizmar and K. Dholakia, Nat. Commun. 3, 1027 (2012).
    [CrossRef]
  5. Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, Phys. Rev. Lett. 109, 203901(2012).
    [CrossRef]
  6. C. LeFort, T. Mansuryan, F. Louradour, and A. Barthelemy, Opt. Lett. 36, 292 (2011).
    [CrossRef]
  7. T. Y. Fan, IEEE J. Sel. Top. Quantum Electron. 11, 567 (2005).
    [CrossRef]
  8. C. Labaune, D. Hulin, A. Galvanauskas, and G. Mourou, Opt. Commun. 281, 4075 (2008).
    [CrossRef]
  9. J. Bourderionnet, C. Bellanger, J. Primot, and A. Brignon, Opt. Express 19, 17053 (2011).
    [CrossRef]
  10. A. J. Thompson, C. Paterson, M. A. A. Neil, C. Dunsby, and P. M. W. French, Opt. Lett. 36, 1707 (2011).
    [CrossRef]
  11. P. S. J. Russell, J. Lightwave Technol. 24, 4729 (2006).
    [CrossRef]

2012 (3)

T. Cizmar and K. Dholakia, Nat. Commun. 3, 1027 (2012).
[CrossRef]

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, Phys. Rev. Lett. 109, 203901(2012).
[CrossRef]

I. N. Papadopoulos, S. Farahi, C. Moser, and D. Psaltis, Opt. Express 20, 10583 (2012).
[CrossRef]

2011 (4)

2009 (1)

2008 (1)

C. Labaune, D. Hulin, A. Galvanauskas, and G. Mourou, Opt. Commun. 281, 4075 (2008).
[CrossRef]

2006 (1)

2005 (1)

T. Y. Fan, IEEE J. Sel. Top. Quantum Electron. 11, 567 (2005).
[CrossRef]

Bao, H.

Barthelemy, A.

Bellanger, C.

Bourderionnet, J.

Brignon, A.

Choi, W.

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, Phys. Rev. Lett. 109, 203901(2012).
[CrossRef]

Choi, Y.

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, Phys. Rev. Lett. 109, 203901(2012).
[CrossRef]

Cizmar, T.

T. Cizmar and K. Dholakia, Nat. Commun. 3, 1027 (2012).
[CrossRef]

Dasari, R. R.

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, Phys. Rev. Lett. 109, 203901(2012).
[CrossRef]

Dholakia, K.

T. Cizmar and K. Dholakia, Nat. Commun. 3, 1027 (2012).
[CrossRef]

Dunsby, C.

Elahi, S. F.

S. F. Elahi and T. D. Wang, J. Biomed. Opt. 4, 471 (2011).
[CrossRef]

Fan, T. Y.

T. Y. Fan, IEEE J. Sel. Top. Quantum Electron. 11, 567 (2005).
[CrossRef]

Fang-Yen, C.

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, Phys. Rev. Lett. 109, 203901(2012).
[CrossRef]

Farahi, S.

French, P. M. W.

Galvanauskas, A.

C. Labaune, D. Hulin, A. Galvanauskas, and G. Mourou, Opt. Commun. 281, 4075 (2008).
[CrossRef]

Gu, M.

Hulin, D.

C. Labaune, D. Hulin, A. Galvanauskas, and G. Mourou, Opt. Commun. 281, 4075 (2008).
[CrossRef]

Kim, M.

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, Phys. Rev. Lett. 109, 203901(2012).
[CrossRef]

Labaune, C.

C. Labaune, D. Hulin, A. Galvanauskas, and G. Mourou, Opt. Commun. 281, 4075 (2008).
[CrossRef]

Lee, K. J.

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, Phys. Rev. Lett. 109, 203901(2012).
[CrossRef]

LeFort, C.

Louradour, F.

Mansuryan, T.

Moser, C.

Mourou, G.

C. Labaune, D. Hulin, A. Galvanauskas, and G. Mourou, Opt. Commun. 281, 4075 (2008).
[CrossRef]

Neil, M. A. A.

Papadopoulos, I. N.

Paterson, C.

Primot, J.

Psaltis, D.

Russell, P. S. J.

Thompson, A. J.

Wang, T. D.

S. F. Elahi and T. D. Wang, J. Biomed. Opt. 4, 471 (2011).
[CrossRef]

Yang, T. D.

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, Phys. Rev. Lett. 109, 203901(2012).
[CrossRef]

Yoon, C.

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, Phys. Rev. Lett. 109, 203901(2012).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

T. Y. Fan, IEEE J. Sel. Top. Quantum Electron. 11, 567 (2005).
[CrossRef]

J. Biomed. Opt. (1)

S. F. Elahi and T. D. Wang, J. Biomed. Opt. 4, 471 (2011).
[CrossRef]

J. Lightwave Technol. (1)

Nat. Commun. (1)

T. Cizmar and K. Dholakia, Nat. Commun. 3, 1027 (2012).
[CrossRef]

Opt. Commun. (1)

C. Labaune, D. Hulin, A. Galvanauskas, and G. Mourou, Opt. Commun. 281, 4075 (2008).
[CrossRef]

Opt. Express (3)

Opt. Lett. (2)

Phys. Rev. Lett. (1)

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, Phys. Rev. Lett. 109, 203901(2012).
[CrossRef]

Supplementary Material (1)

» Media 1: AVI (1892 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Sketch of the experimental setup. Laser, continous-wave laser at 1057 nm; 2D-SLM, two-dimensional spatial light modulator; Bundle, 2 m fiber bundle; OP, object plane; CMOS, CMOS image sensor conjugated with OP; PD, Ø500μm photodiode conjugated with OP; PC, personal computer. f1=30mm; f2=200mm; f3=500mm; f4=f5=75mm; f8=300mm; f9=100mm; f6, 40× microscope objective; f7, 20× microscope objective. Left inset, electron micrograph of the fiber bundle. Middle inset, crop of a mask on the 2D-SLM. Right inset, image of the spot pattern in OP after phase calibration.

Fig. 2.
Fig. 2.

Focusing at different depths Z. Images of OP located at (1st row) Z=475μm, (2nd row) Z=625μm, and (3rd row) Z=775μm for values of Δϕ(2) in the range 4.2 to 4.2mrad/μm2 (columns). N=91cores were illuminated.

Fig. 3.
Fig. 3.

Video-rate scanning transmission microscopy. (a) Conventional microscope image of the region of the 1951 USAF resolution target that was studied. (b–f) Frames from [media 1] showing scanning microscopy through the fiber bundle in transmission mode. (b) The number 7, (c) feature size 3.9 μm, (d) feature size 3.5 μm, (e) feature size 3.1 μm, and (f) feature size 2.8 μm. Image size 350×350 pixels. Scale bar 20 μm.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

ϕi(xi,yi)=2πλ(xi2+yi2+Z2Z)πλZ(xi2+yi2)12ϕ(2)(xi2+yi2),
ϕi(xi,yi)=ϕx(1)xi+ϕy(1)yi+12ϕ(2)(xi2+yi2).
|E(x,y,Z)|=|E˜(xλZ,yλZ,0)|.

Metrics