Abstract

We investigate intra-cavity coherent beam combining in a system of two fiber lasers when a spectrally selective element is inserted in one of the lasers. We found that narrow spectral content can be imposed on the other laser, resulting in narrowband operation of the system with high combining efficiency. Furthermore, the combining efficiency decreases as the imposed wavelength is farther away from the natural lasing wavelength of the system and depends on the gain imbalance between the lasers. Our results demonstrate, for the first time, the rich dynamics associated with the spectral mode competition in the intra-cavity coherently combined system.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Fan, IEEE J. Sel. Top. Quantum Electron. 11, 567 (2005).
    [CrossRef]
  2. A. Shirakawa, T. Saitou, T. Sekiguchi, and K. Ueda, Opt. Express 10, 1167 (2002).
    [CrossRef]
  3. M. Minden, H. Bruesselbach, J. Rogers, M. Mangir, D. Jones, G. Dunning, D. Hammon, A. Solis, and L. Vaughan, Proc. SPIE 5335, 89 (2004).
    [CrossRef]
  4. A. Ishaaya, N. Davidson, and A. Friesem, IEEE J. Sel. Top. Quantum Electron. 15, 301 (2009).
    [CrossRef]
  5. V. Eckhouse, A. Ishaaya, L. Shimshi, N. Davidson, and A. Friesem, Opt. Lett. 31, 350 (2006).
    [CrossRef]
  6. A. Shirakawa, K. Matsuo, and K. Ueda, Proc. SPIE 5709, 165 (2005).
    [CrossRef]
  7. T. Simpson, A. Gavrielides, and P. Peterson, Opt. Express 10, 1060 (2002).
    [CrossRef]
  8. T. Wu, W. Chang, A. Galvanauskas, and H. Winful, Opt. Express 17, 19509 (2009).
    [CrossRef]
  9. M. Fridman, M. Nixon, E. Ronen, A. Friesem, and N. Davidson, Opt. Lett. 35, 526 (2010).
    [CrossRef]

2010 (1)

2009 (2)

A. Ishaaya, N. Davidson, and A. Friesem, IEEE J. Sel. Top. Quantum Electron. 15, 301 (2009).
[CrossRef]

T. Wu, W. Chang, A. Galvanauskas, and H. Winful, Opt. Express 17, 19509 (2009).
[CrossRef]

2006 (1)

2005 (2)

T. Fan, IEEE J. Sel. Top. Quantum Electron. 11, 567 (2005).
[CrossRef]

A. Shirakawa, K. Matsuo, and K. Ueda, Proc. SPIE 5709, 165 (2005).
[CrossRef]

2004 (1)

M. Minden, H. Bruesselbach, J. Rogers, M. Mangir, D. Jones, G. Dunning, D. Hammon, A. Solis, and L. Vaughan, Proc. SPIE 5335, 89 (2004).
[CrossRef]

2002 (2)

Bruesselbach, H.

M. Minden, H. Bruesselbach, J. Rogers, M. Mangir, D. Jones, G. Dunning, D. Hammon, A. Solis, and L. Vaughan, Proc. SPIE 5335, 89 (2004).
[CrossRef]

Chang, W.

Davidson, N.

Dunning, G.

M. Minden, H. Bruesselbach, J. Rogers, M. Mangir, D. Jones, G. Dunning, D. Hammon, A. Solis, and L. Vaughan, Proc. SPIE 5335, 89 (2004).
[CrossRef]

Eckhouse, V.

Fan, T.

T. Fan, IEEE J. Sel. Top. Quantum Electron. 11, 567 (2005).
[CrossRef]

Fridman, M.

Friesem, A.

Galvanauskas, A.

Gavrielides, A.

Hammon, D.

M. Minden, H. Bruesselbach, J. Rogers, M. Mangir, D. Jones, G. Dunning, D. Hammon, A. Solis, and L. Vaughan, Proc. SPIE 5335, 89 (2004).
[CrossRef]

Ishaaya, A.

A. Ishaaya, N. Davidson, and A. Friesem, IEEE J. Sel. Top. Quantum Electron. 15, 301 (2009).
[CrossRef]

V. Eckhouse, A. Ishaaya, L. Shimshi, N. Davidson, and A. Friesem, Opt. Lett. 31, 350 (2006).
[CrossRef]

Jones, D.

M. Minden, H. Bruesselbach, J. Rogers, M. Mangir, D. Jones, G. Dunning, D. Hammon, A. Solis, and L. Vaughan, Proc. SPIE 5335, 89 (2004).
[CrossRef]

Mangir, M.

M. Minden, H. Bruesselbach, J. Rogers, M. Mangir, D. Jones, G. Dunning, D. Hammon, A. Solis, and L. Vaughan, Proc. SPIE 5335, 89 (2004).
[CrossRef]

Matsuo, K.

A. Shirakawa, K. Matsuo, and K. Ueda, Proc. SPIE 5709, 165 (2005).
[CrossRef]

Minden, M.

M. Minden, H. Bruesselbach, J. Rogers, M. Mangir, D. Jones, G. Dunning, D. Hammon, A. Solis, and L. Vaughan, Proc. SPIE 5335, 89 (2004).
[CrossRef]

Nixon, M.

Peterson, P.

Rogers, J.

M. Minden, H. Bruesselbach, J. Rogers, M. Mangir, D. Jones, G. Dunning, D. Hammon, A. Solis, and L. Vaughan, Proc. SPIE 5335, 89 (2004).
[CrossRef]

Ronen, E.

Saitou, T.

Sekiguchi, T.

Shimshi, L.

Shirakawa, A.

A. Shirakawa, K. Matsuo, and K. Ueda, Proc. SPIE 5709, 165 (2005).
[CrossRef]

A. Shirakawa, T. Saitou, T. Sekiguchi, and K. Ueda, Opt. Express 10, 1167 (2002).
[CrossRef]

Simpson, T.

Solis, A.

M. Minden, H. Bruesselbach, J. Rogers, M. Mangir, D. Jones, G. Dunning, D. Hammon, A. Solis, and L. Vaughan, Proc. SPIE 5335, 89 (2004).
[CrossRef]

Ueda, K.

A. Shirakawa, K. Matsuo, and K. Ueda, Proc. SPIE 5709, 165 (2005).
[CrossRef]

A. Shirakawa, T. Saitou, T. Sekiguchi, and K. Ueda, Opt. Express 10, 1167 (2002).
[CrossRef]

Vaughan, L.

M. Minden, H. Bruesselbach, J. Rogers, M. Mangir, D. Jones, G. Dunning, D. Hammon, A. Solis, and L. Vaughan, Proc. SPIE 5335, 89 (2004).
[CrossRef]

Winful, H.

Wu, T.

IEEE J. Sel. Top. Quantum Electron. (2)

T. Fan, IEEE J. Sel. Top. Quantum Electron. 11, 567 (2005).
[CrossRef]

A. Ishaaya, N. Davidson, and A. Friesem, IEEE J. Sel. Top. Quantum Electron. 15, 301 (2009).
[CrossRef]

Opt. Express (3)

Opt. Lett. (2)

Proc. SPIE (2)

A. Shirakawa, K. Matsuo, and K. Ueda, Proc. SPIE 5709, 165 (2005).
[CrossRef]

M. Minden, H. Bruesselbach, J. Rogers, M. Mangir, D. Jones, G. Dunning, D. Hammon, A. Solis, and L. Vaughan, Proc. SPIE 5335, 89 (2004).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Experimental setup.

Fig. 2.
Fig. 2.

Measured combining efficiency as a function of the pump difference in both fiber laser channels for different reflecting rear elements.

Fig. 3.
Fig. 3.

Measured output power of each channel operated separately as a function of the pump power. Slope efficiencies are indicated in parenthesis.

Fig. 4.
Fig. 4.

Measured spectrum from the OC and the loss channel (dotted black and solid blue curves, respectively).

Fig. 5.
Fig. 5.

Measured spectrum from the OC for the case of VBG 1064 at ΔPPUMP=0.

Tables (1)

Tables Icon

Table 1. CH2 Rear Reflecting Elements

Metrics