Abstract

We propose and experimentally demonstrate a simple scheme to generate flattened optical subcarriers at low insertion loss using only phase modulators driven by fundamental frequency sinusoidal sources. A small frequency offset is introduced in the second stage to obtain phase-insensitive, stable, and flattened subcarriers. Theoretical and numerical analysis with experimental results are carried out on this scheme. Twenty-one stable comb tones with 25 GHz frequency spacing are obtained with power difference less than 3 dB. The good bit-error-ratio performance of 160.8Gb/s polarization-division-multiplexing quadrature-phase-shift-keying signal carried by one selected subcarrier clearly demonstrates the feasibility of this comb generation scheme.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. Company, D. E. Leaird, and A. M. Weiner, Opt. Lett. 37, 3993 (2012).
    [CrossRef]
  2. P. J. Delfyett, I. Ozdur, N. Hoghooghi, M. Akbulut, J. Davila-Rodriguez, and S. Bhooplapur, IEEE J. Sel. Top. Quantum Electron. 18, 258 (2012).
    [CrossRef]
  3. F. Tian, X. Zhang, J. Li, and L. Xi, J. Lightwave Technol. 29, 1085 (2011).
    [CrossRef]
  4. C. Chen, C. Zhang, D. Liu, K. Qiu, and S. Liu, Opt. Lett. 37, 3954 (2012).
    [CrossRef]
  5. M. Fujiwara, M. Teshima, J. Kani, H. Suzuki, N. Takachio, and K. Iwatsuki, J. Lightwave Technol. 21, 2705 (2003).
    [CrossRef]
  6. K. Ho and J. M. Kahn, IEEE Photonics Technol. Lett. 5, 721 (1993).
    [CrossRef]
  7. S. Ozharar, F. Quinlan, I. Ozdur, S. Gee, and P. J. Delfyett, IEEE Photonics Technol. Lett. 20, 36 (2008).
    [CrossRef]
  8. Y. Lu, Y. Xing, and Y. Dong, Chin. Opt. Lett. 8, 316 (2010).

2012 (3)

P. J. Delfyett, I. Ozdur, N. Hoghooghi, M. Akbulut, J. Davila-Rodriguez, and S. Bhooplapur, IEEE J. Sel. Top. Quantum Electron. 18, 258 (2012).
[CrossRef]

C. Chen, C. Zhang, D. Liu, K. Qiu, and S. Liu, Opt. Lett. 37, 3954 (2012).
[CrossRef]

V. Company, D. E. Leaird, and A. M. Weiner, Opt. Lett. 37, 3993 (2012).
[CrossRef]

2011 (1)

2010 (1)

2008 (1)

S. Ozharar, F. Quinlan, I. Ozdur, S. Gee, and P. J. Delfyett, IEEE Photonics Technol. Lett. 20, 36 (2008).
[CrossRef]

2003 (1)

1993 (1)

K. Ho and J. M. Kahn, IEEE Photonics Technol. Lett. 5, 721 (1993).
[CrossRef]

Akbulut, M.

P. J. Delfyett, I. Ozdur, N. Hoghooghi, M. Akbulut, J. Davila-Rodriguez, and S. Bhooplapur, IEEE J. Sel. Top. Quantum Electron. 18, 258 (2012).
[CrossRef]

Bhooplapur, S.

P. J. Delfyett, I. Ozdur, N. Hoghooghi, M. Akbulut, J. Davila-Rodriguez, and S. Bhooplapur, IEEE J. Sel. Top. Quantum Electron. 18, 258 (2012).
[CrossRef]

Chen, C.

Company, V.

Davila-Rodriguez, J.

P. J. Delfyett, I. Ozdur, N. Hoghooghi, M. Akbulut, J. Davila-Rodriguez, and S. Bhooplapur, IEEE J. Sel. Top. Quantum Electron. 18, 258 (2012).
[CrossRef]

Delfyett, P. J.

P. J. Delfyett, I. Ozdur, N. Hoghooghi, M. Akbulut, J. Davila-Rodriguez, and S. Bhooplapur, IEEE J. Sel. Top. Quantum Electron. 18, 258 (2012).
[CrossRef]

S. Ozharar, F. Quinlan, I. Ozdur, S. Gee, and P. J. Delfyett, IEEE Photonics Technol. Lett. 20, 36 (2008).
[CrossRef]

Dong, Y.

Fujiwara, M.

Gee, S.

S. Ozharar, F. Quinlan, I. Ozdur, S. Gee, and P. J. Delfyett, IEEE Photonics Technol. Lett. 20, 36 (2008).
[CrossRef]

Ho, K.

K. Ho and J. M. Kahn, IEEE Photonics Technol. Lett. 5, 721 (1993).
[CrossRef]

Hoghooghi, N.

P. J. Delfyett, I. Ozdur, N. Hoghooghi, M. Akbulut, J. Davila-Rodriguez, and S. Bhooplapur, IEEE J. Sel. Top. Quantum Electron. 18, 258 (2012).
[CrossRef]

Iwatsuki, K.

Kahn, J. M.

K. Ho and J. M. Kahn, IEEE Photonics Technol. Lett. 5, 721 (1993).
[CrossRef]

Kani, J.

Leaird, D. E.

Li, J.

Liu, D.

Liu, S.

Lu, Y.

Ozdur, I.

P. J. Delfyett, I. Ozdur, N. Hoghooghi, M. Akbulut, J. Davila-Rodriguez, and S. Bhooplapur, IEEE J. Sel. Top. Quantum Electron. 18, 258 (2012).
[CrossRef]

S. Ozharar, F. Quinlan, I. Ozdur, S. Gee, and P. J. Delfyett, IEEE Photonics Technol. Lett. 20, 36 (2008).
[CrossRef]

Ozharar, S.

S. Ozharar, F. Quinlan, I. Ozdur, S. Gee, and P. J. Delfyett, IEEE Photonics Technol. Lett. 20, 36 (2008).
[CrossRef]

Qiu, K.

Quinlan, F.

S. Ozharar, F. Quinlan, I. Ozdur, S. Gee, and P. J. Delfyett, IEEE Photonics Technol. Lett. 20, 36 (2008).
[CrossRef]

Suzuki, H.

Takachio, N.

Teshima, M.

Tian, F.

Weiner, A. M.

Xi, L.

Xing, Y.

Zhang, C.

Zhang, X.

Chin. Opt. Lett. (1)

IEEE J. Sel. Top. Quantum Electron. (1)

P. J. Delfyett, I. Ozdur, N. Hoghooghi, M. Akbulut, J. Davila-Rodriguez, and S. Bhooplapur, IEEE J. Sel. Top. Quantum Electron. 18, 258 (2012).
[CrossRef]

IEEE Photonics Technol. Lett. (2)

K. Ho and J. M. Kahn, IEEE Photonics Technol. Lett. 5, 721 (1993).
[CrossRef]

S. Ozharar, F. Quinlan, I. Ozdur, S. Gee, and P. J. Delfyett, IEEE Photonics Technol. Lett. 20, 36 (2008).
[CrossRef]

J. Lightwave Technol. (2)

Opt. Lett. (2)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) Principle of comb generation and (b) power transferring by two-stage phase modulators driven by single frequency RF sources with small frequency offset.

Fig. 2.
Fig. 2.

Numerical simulation results. (a) TPD versus Rc without frequency offset. (b) TPD versus R1 and R2 with small frequency offset. (c) TPD versus R2 and phase deviation with small frequency offset. (d) Generated comb with small frequency offset in zone A. (e) Generated comb with small frequency offset in zone C. (f) TPD versus frequency offset for zone C.

Fig. 3.
Fig. 3.

(a) Experimental setup: PC, polarization controller; TOF, tunable optical filter; EDFA, erbium doped fiber amplifier; LO, local oscillator; Pol-Mux, polarization multiplexing. (b) Comb generated only by the first-stage phase modulation without frequency offset. (c) Comb generated by two-stage phase modulation with 500 kHz frequency offset.

Fig. 4.
Fig. 4.

(a) Self-homodyne detected RF spectrum of one tone. (b) BTB BER performance varying with OSNR for generated subcarrier and source carrier.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Eout1(t)=Ecexp[jπR1sin(2πfst)]=Eon=Jn(πR1)exp[j2π(fc+nfs)t],
Eout2(t)=Eon=+k=+[Jnk(πR1)Jk(πR2)exp(jkφ)]exp[j2π(fc+nfs)t]=Eon=Jn(πRc)exp[j2π(fc+nfs)t+jnψ]=Ecexp[jπRcsin(2πfst+ψ)],
E˜out2(t)=Eon=+k=+|Jnk(πR1)||Jk(πR2)|exp[j2π(fc+nfs)t],

Metrics