Abstract

Rayleigh scattering (RS) adds noise to signals that are transmitted over optical fibers and other optical waveguides. This noise can be the dominant noise source in a range between 10 Hz and 100 kHz from the carrier and can seriously degrade the performance of optical systems that require low close-in noise. Using heterodyne techniques, we demonstrate that the backscattered close-in noise spectrum in optical fibers is symmetric about the carrier and grows linearly with both input power and fiber length. These results indicate that the RS is spontaneous and is due to finite-lifetime thermal fluctuations in the glass.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. O. Okusaga, W. Zhou, E. Levy, M. Horowitz, G. M. Carter, and C. R. Menyuk, in Proceedings of the Conference on Lasers and Electro-Optics (Optical Society of America, 2009), paper CFB3.
  2. P. A. Williams, W. C. Swann, and N. R. Newbury, J. Opt. Soc. Am. B 25, 1284 (2008).
    [CrossRef]
  3. A. B. Matsko, Practical Applications of Microresonators in Optics and Photonics (CRC, 2009).
  4. M. Froggat and J. Moore, Appl. Opt. 37, 1735 (1998).
    [CrossRef]
  5. W. K. Burns and R. P. Moeller, J. Lightwave Technol. 1, 381 (1983).
    [CrossRef]
  6. T. Zhu, X. Bao, L. Chen, H. Liang, and Y. Dong, Opt. Express 18, 22958 (2010).
    [CrossRef]
  7. O. Okusaga, J. Cahill, A. Docherty, W. Zhou, and C. R. Menyuk, Opt. Lett. 37, 683 (2012).
    [CrossRef]
  8. R. W. Boyd, Nonlinear Optics, 3rd ed. (Elsevier, 2008), Chap. 9.6. see, in particular, Fig. 9.6.1.
  9. T. Zhu, X. Bao, and L. Chen, J. Lightwave Technol. 29, 1802 (2011).
    [CrossRef]
  10. T. Zhu, X. Bao, and L. Chen, Opt. Commun. 285, 1371 (2012).
    [CrossRef]

2012

2011

2010

2008

1998

1983

W. K. Burns and R. P. Moeller, J. Lightwave Technol. 1, 381 (1983).
[CrossRef]

Bao, X.

Boyd, R. W.

R. W. Boyd, Nonlinear Optics, 3rd ed. (Elsevier, 2008), Chap. 9.6. see, in particular, Fig. 9.6.1.

Burns, W. K.

W. K. Burns and R. P. Moeller, J. Lightwave Technol. 1, 381 (1983).
[CrossRef]

Cahill, J.

Carter, G. M.

O. Okusaga, W. Zhou, E. Levy, M. Horowitz, G. M. Carter, and C. R. Menyuk, in Proceedings of the Conference on Lasers and Electro-Optics (Optical Society of America, 2009), paper CFB3.

Chen, L.

Docherty, A.

Dong, Y.

Froggat, M.

Horowitz, M.

O. Okusaga, W. Zhou, E. Levy, M. Horowitz, G. M. Carter, and C. R. Menyuk, in Proceedings of the Conference on Lasers and Electro-Optics (Optical Society of America, 2009), paper CFB3.

Levy, E.

O. Okusaga, W. Zhou, E. Levy, M. Horowitz, G. M. Carter, and C. R. Menyuk, in Proceedings of the Conference on Lasers and Electro-Optics (Optical Society of America, 2009), paper CFB3.

Liang, H.

Matsko, A. B.

A. B. Matsko, Practical Applications of Microresonators in Optics and Photonics (CRC, 2009).

Menyuk, C. R.

O. Okusaga, J. Cahill, A. Docherty, W. Zhou, and C. R. Menyuk, Opt. Lett. 37, 683 (2012).
[CrossRef]

O. Okusaga, W. Zhou, E. Levy, M. Horowitz, G. M. Carter, and C. R. Menyuk, in Proceedings of the Conference on Lasers and Electro-Optics (Optical Society of America, 2009), paper CFB3.

Moeller, R. P.

W. K. Burns and R. P. Moeller, J. Lightwave Technol. 1, 381 (1983).
[CrossRef]

Moore, J.

Newbury, N. R.

Okusaga, O.

O. Okusaga, J. Cahill, A. Docherty, W. Zhou, and C. R. Menyuk, Opt. Lett. 37, 683 (2012).
[CrossRef]

O. Okusaga, W. Zhou, E. Levy, M. Horowitz, G. M. Carter, and C. R. Menyuk, in Proceedings of the Conference on Lasers and Electro-Optics (Optical Society of America, 2009), paper CFB3.

Swann, W. C.

Williams, P. A.

Zhou, W.

O. Okusaga, J. Cahill, A. Docherty, W. Zhou, and C. R. Menyuk, Opt. Lett. 37, 683 (2012).
[CrossRef]

O. Okusaga, W. Zhou, E. Levy, M. Horowitz, G. M. Carter, and C. R. Menyuk, in Proceedings of the Conference on Lasers and Electro-Optics (Optical Society of America, 2009), paper CFB3.

Zhu, T.

Appl. Opt.

J. Lightwave Technol.

T. Zhu, X. Bao, and L. Chen, J. Lightwave Technol. 29, 1802 (2011).
[CrossRef]

W. K. Burns and R. P. Moeller, J. Lightwave Technol. 1, 381 (1983).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Commun.

T. Zhu, X. Bao, and L. Chen, Opt. Commun. 285, 1371 (2012).
[CrossRef]

Opt. Express

Opt. Lett.

Other

R. W. Boyd, Nonlinear Optics, 3rd ed. (Elsevier, 2008), Chap. 9.6. see, in particular, Fig. 9.6.1.

O. Okusaga, W. Zhou, E. Levy, M. Horowitz, G. M. Carter, and C. R. Menyuk, in Proceedings of the Conference on Lasers and Electro-Optics (Optical Society of America, 2009), paper CFB3.

A. B. Matsko, Practical Applications of Microresonators in Optics and Photonics (CRC, 2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Schematic diagram of our heterodyne interferometer. The acousto-optic modulators AOM1 and AOM2 are tuned to determine the IF.

Fig. 2.
Fig. 2.

Plots of the measured Rayleigh gain from a 10 km single-mode fiber with a 0 dBm incident laser beam.

Fig. 3.
Fig. 3.

Plots of the measured Rayleigh gain from a 10 km single-mode fiber for various incident power levels. The gain curves were normalized to the incident optical power.

Fig. 4.
Fig. 4.

Plots of the measured Rayleigh gain from 40 m, 1 km, and 10 km single-mode fibers with an 8 dBm incident laser beam.

Fig. 5.
Fig. 5.

Plots of the Stokes and anti-Stokes gain peaks versus fiber length for an 8 dBm incident laser beam.

Metrics