Abstract

A fiber-optic vector vibroscope based on orthogonal polarization cladding-to-core recoupling is demonstrated. A compact structure in which a short section of polarization-maintained (PM) fiber stub containing a straight fiber Bragg grating (FBG) is spliced to another single-mode fiber. Two well-defined orthogonally polarized cladding modes reflected by the PM-FBG are recoupled at the junction and the coupling intensity shows an extremely high sensitivity to bending in the corresponding orthogonal directions. Both the orientation and amplitude of the vibrations can be determined unambiguously via dual-path power detection of these recoupled orthogonal-polarimetric cladding modes (LP1,12 and LP1,13). Since spectral information is not required, temperature changes do not affect the sensor response, and power fluctuations can be referenced out by monitoring the power in the core mode (LP0,1) resonance.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Bosia, P. Giaccari, J. Botsis, M. Facchini, H. G. Limberger, and R. Salathé, Smart Mater. Struct. 12, 925 (2003).
  2. J. F. Botero-Cadavid, J. D. Causado-Buelvas, and P. Torres, IEEE J. Lightwave Technol. 28, 1291 (2010).
    [CrossRef]
  3. M. S. Müller, H. J. El-Khozondar, T. C. Buck, and A. W. Koch, Opt. Lett. 34, 2622 (2009).
    [CrossRef]
  4. R. Miao, W. Zhang, X. Feng, J. H. Zhao, and X. M. Liu, Appl. Opt. 48, 709 (2009).
    [CrossRef]
  5. J. U. Thomas, N. Jovanovic, R. G. Krämer, G. D. Marshall, M. J. Withford, A. Tünnermann, S. Nolte, and M. J. Steel, Opt. Express 20, 21434 (2012).
    [CrossRef]
  6. J. Albert, L. Y. Shao, and C. Caucheteur, Laser Photon. Rev. 7, 83 (2013).
    [CrossRef]
  7. T. Guo, L. B. Shang, Y. Ran, B. O. Guan, and J. Albert, Opt. Lett. 37, 2703 (2012).
    [CrossRef]
  8. T. Guo, A. Ivanov, C. K. Chen, and J. Albert, Opt. Lett. 33, 1004 (2008).
    [CrossRef]
  9. T. Guo, L. Y. Shao, H. Y. Tam, P. Krug, and J. Albert, Opt. Express 17, 20651 (2009).
    [CrossRef]
  10. B. Zhou, A. P. Zhang, B. B. Gu, and S. L. He, IEEE Photon. J. 2, 152 (2010).
    [CrossRef]

2013 (1)

J. Albert, L. Y. Shao, and C. Caucheteur, Laser Photon. Rev. 7, 83 (2013).
[CrossRef]

2012 (2)

2010 (2)

J. F. Botero-Cadavid, J. D. Causado-Buelvas, and P. Torres, IEEE J. Lightwave Technol. 28, 1291 (2010).
[CrossRef]

B. Zhou, A. P. Zhang, B. B. Gu, and S. L. He, IEEE Photon. J. 2, 152 (2010).
[CrossRef]

2009 (3)

2008 (1)

2003 (1)

F. Bosia, P. Giaccari, J. Botsis, M. Facchini, H. G. Limberger, and R. Salathé, Smart Mater. Struct. 12, 925 (2003).

Albert, J.

Bosia, F.

F. Bosia, P. Giaccari, J. Botsis, M. Facchini, H. G. Limberger, and R. Salathé, Smart Mater. Struct. 12, 925 (2003).

Botero-Cadavid, J. F.

J. F. Botero-Cadavid, J. D. Causado-Buelvas, and P. Torres, IEEE J. Lightwave Technol. 28, 1291 (2010).
[CrossRef]

Botsis, J.

F. Bosia, P. Giaccari, J. Botsis, M. Facchini, H. G. Limberger, and R. Salathé, Smart Mater. Struct. 12, 925 (2003).

Buck, T. C.

Caucheteur, C.

J. Albert, L. Y. Shao, and C. Caucheteur, Laser Photon. Rev. 7, 83 (2013).
[CrossRef]

Causado-Buelvas, J. D.

J. F. Botero-Cadavid, J. D. Causado-Buelvas, and P. Torres, IEEE J. Lightwave Technol. 28, 1291 (2010).
[CrossRef]

Chen, C. K.

El-Khozondar, H. J.

Facchini, M.

F. Bosia, P. Giaccari, J. Botsis, M. Facchini, H. G. Limberger, and R. Salathé, Smart Mater. Struct. 12, 925 (2003).

Feng, X.

R. Miao, W. Zhang, X. Feng, J. H. Zhao, and X. M. Liu, Appl. Opt. 48, 709 (2009).
[CrossRef]

Giaccari, P.

F. Bosia, P. Giaccari, J. Botsis, M. Facchini, H. G. Limberger, and R. Salathé, Smart Mater. Struct. 12, 925 (2003).

Gu, B. B.

B. Zhou, A. P. Zhang, B. B. Gu, and S. L. He, IEEE Photon. J. 2, 152 (2010).
[CrossRef]

Guan, B. O.

Guo, T.

He, S. L.

B. Zhou, A. P. Zhang, B. B. Gu, and S. L. He, IEEE Photon. J. 2, 152 (2010).
[CrossRef]

Ivanov, A.

Jovanovic, N.

Koch, A. W.

Krämer, R. G.

Krug, P.

Limberger, H. G.

F. Bosia, P. Giaccari, J. Botsis, M. Facchini, H. G. Limberger, and R. Salathé, Smart Mater. Struct. 12, 925 (2003).

Liu, X. M.

R. Miao, W. Zhang, X. Feng, J. H. Zhao, and X. M. Liu, Appl. Opt. 48, 709 (2009).
[CrossRef]

Marshall, G. D.

Miao, R.

R. Miao, W. Zhang, X. Feng, J. H. Zhao, and X. M. Liu, Appl. Opt. 48, 709 (2009).
[CrossRef]

Müller, M. S.

Nolte, S.

Ran, Y.

Salathé, R.

F. Bosia, P. Giaccari, J. Botsis, M. Facchini, H. G. Limberger, and R. Salathé, Smart Mater. Struct. 12, 925 (2003).

Shang, L. B.

Shao, L. Y.

J. Albert, L. Y. Shao, and C. Caucheteur, Laser Photon. Rev. 7, 83 (2013).
[CrossRef]

T. Guo, L. Y. Shao, H. Y. Tam, P. Krug, and J. Albert, Opt. Express 17, 20651 (2009).
[CrossRef]

Steel, M. J.

Tam, H. Y.

Thomas, J. U.

Torres, P.

J. F. Botero-Cadavid, J. D. Causado-Buelvas, and P. Torres, IEEE J. Lightwave Technol. 28, 1291 (2010).
[CrossRef]

Tünnermann, A.

Withford, M. J.

Zhang, A. P.

B. Zhou, A. P. Zhang, B. B. Gu, and S. L. He, IEEE Photon. J. 2, 152 (2010).
[CrossRef]

Zhang, W.

R. Miao, W. Zhang, X. Feng, J. H. Zhao, and X. M. Liu, Appl. Opt. 48, 709 (2009).
[CrossRef]

Zhao, J. H.

R. Miao, W. Zhang, X. Feng, J. H. Zhao, and X. M. Liu, Appl. Opt. 48, 709 (2009).
[CrossRef]

Zhou, B.

B. Zhou, A. P. Zhang, B. B. Gu, and S. L. He, IEEE Photon. J. 2, 152 (2010).
[CrossRef]

Appl. Opt. (1)

R. Miao, W. Zhang, X. Feng, J. H. Zhao, and X. M. Liu, Appl. Opt. 48, 709 (2009).
[CrossRef]

IEEE J. Lightwave Technol. (1)

J. F. Botero-Cadavid, J. D. Causado-Buelvas, and P. Torres, IEEE J. Lightwave Technol. 28, 1291 (2010).
[CrossRef]

IEEE Photon. J. (1)

B. Zhou, A. P. Zhang, B. B. Gu, and S. L. He, IEEE Photon. J. 2, 152 (2010).
[CrossRef]

Laser Photon. Rev. (1)

J. Albert, L. Y. Shao, and C. Caucheteur, Laser Photon. Rev. 7, 83 (2013).
[CrossRef]

Opt. Express (2)

Opt. Lett. (3)

Smart Mater. Struct. (1)

F. Bosia, P. Giaccari, J. Botsis, M. Facchini, H. G. Limberger, and R. Salathé, Smart Mater. Struct. 12, 925 (2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Schematic diagram of PM-FBG vector vibration sensing system. Inset (a) shows the configuration of the PM-FBG sensing probe, (b) shows the photograph of the SMF-PMF splicing point and the cross section of the “Bow Tie” PMF, and (c) presents the principle of X-Y profile vector analysis via orthogonal-polarimetric cladding-mode detections (X- and Y-polarization).

Fig. 2.
Fig. 2.

Reflection spectrum of PM-FBG under X- and Y-polarizations.

Fig. 3.
Fig. 3.

Comparison of two orthogonal polarimetric reflections (X- and Y-polarizations) of PM-FBG and their response to orthogonal-polarimetric bending (X- and Y-axis).

Fig. 4.
Fig. 4.

Real-time power output of PD1 (X-polarized LP1,12+13 modes) and PD2 (Y-polarized LP1,12+13 modes) under a given vibration (30 Hz) with different orientations of 0° (a), 90° (b) and the stable power references of the fundamental core mode (LP01), where insets show the photographs of the cross section of PMF and their corresponding orthogonal-polarimetric sensitivity response; (c) angular dependence of vibration responsivity versus orthogonal-polarimetric orientation.

Metrics