Abstract

An infrared reflectarray metasurface with engineered birefringent behavior is demonstrated. The array reradiates incoming light into two orthogonal, linearly polarized reflections. The reflectarray is composed of rectangular metallic patch nanoantennas placed on top of a grounded dielectric stand-off layer. The patches are designed to locally manipulate the phase front of the incoming wave. They tailor the reflection phase to transform the phase front on the surface to the one desired for both orthogonal polarizations at the same time. The proposed nanoantenna metasurface can find applications in many optical devices, such as birefringent modulators, waveplates, polarizers, and splitters.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. C. Ginn, B. A. Lail, and G. D. Boreman, in Antennas and Propagation Society International Symposium 2006 (IEEE, 2006), pp. 4315–4318.
  2. J. C. Ginn, B. A. Lail, and G. D. Boreman, IEEE Trans. Antennas Propag. 55, 2989 (2007).
    [CrossRef]
  3. J. Ginn, B. Lail, J. Alda, and G. Boreman, Opt. Lett. 33, 779 (2008).
    [CrossRef]
  4. A. Ahmadi, S. Ghadarghadr, and H. Mosallaei, Opt. Express 18, 123 (2010).
    [CrossRef]
  5. J. A. Gómez-Pedrero, J. Ginn, J. Alda, and G. Boreman, Appl. Opt. 50, 5344 (2011).
    [CrossRef]
  6. D. J. Shelton, K. R. Coffey, and G. D. Boreman, Opt. Express 18, 1330 (2010).
    [CrossRef]
  7. B. Glance, J. Lightwave Technol. 5, 274 (1987).
    [CrossRef]
  8. D. M. Pozar, S. D. Targonski, and R. Pokuls, IEEE Trans. Antennas Propag. 47, 1167 (1999).
    [CrossRef]

2011 (1)

2010 (2)

2008 (1)

2007 (1)

J. C. Ginn, B. A. Lail, and G. D. Boreman, IEEE Trans. Antennas Propag. 55, 2989 (2007).
[CrossRef]

1999 (1)

D. M. Pozar, S. D. Targonski, and R. Pokuls, IEEE Trans. Antennas Propag. 47, 1167 (1999).
[CrossRef]

1987 (1)

B. Glance, J. Lightwave Technol. 5, 274 (1987).
[CrossRef]

Ahmadi, A.

Alda, J.

Boreman, G.

Boreman, G. D.

D. J. Shelton, K. R. Coffey, and G. D. Boreman, Opt. Express 18, 1330 (2010).
[CrossRef]

J. C. Ginn, B. A. Lail, and G. D. Boreman, IEEE Trans. Antennas Propag. 55, 2989 (2007).
[CrossRef]

J. C. Ginn, B. A. Lail, and G. D. Boreman, in Antennas and Propagation Society International Symposium 2006 (IEEE, 2006), pp. 4315–4318.

Coffey, K. R.

Ghadarghadr, S.

Ginn, J.

Ginn, J. C.

J. C. Ginn, B. A. Lail, and G. D. Boreman, IEEE Trans. Antennas Propag. 55, 2989 (2007).
[CrossRef]

J. C. Ginn, B. A. Lail, and G. D. Boreman, in Antennas and Propagation Society International Symposium 2006 (IEEE, 2006), pp. 4315–4318.

Glance, B.

B. Glance, J. Lightwave Technol. 5, 274 (1987).
[CrossRef]

Gómez-Pedrero, J. A.

Lail, B.

Lail, B. A.

J. C. Ginn, B. A. Lail, and G. D. Boreman, IEEE Trans. Antennas Propag. 55, 2989 (2007).
[CrossRef]

J. C. Ginn, B. A. Lail, and G. D. Boreman, in Antennas and Propagation Society International Symposium 2006 (IEEE, 2006), pp. 4315–4318.

Mosallaei, H.

Pokuls, R.

D. M. Pozar, S. D. Targonski, and R. Pokuls, IEEE Trans. Antennas Propag. 47, 1167 (1999).
[CrossRef]

Pozar, D. M.

D. M. Pozar, S. D. Targonski, and R. Pokuls, IEEE Trans. Antennas Propag. 47, 1167 (1999).
[CrossRef]

Shelton, D. J.

Targonski, S. D.

D. M. Pozar, S. D. Targonski, and R. Pokuls, IEEE Trans. Antennas Propag. 47, 1167 (1999).
[CrossRef]

Appl. Opt. (1)

IEEE Trans. Antennas Propag. (2)

D. M. Pozar, S. D. Targonski, and R. Pokuls, IEEE Trans. Antennas Propag. 47, 1167 (1999).
[CrossRef]

J. C. Ginn, B. A. Lail, and G. D. Boreman, IEEE Trans. Antennas Propag. 55, 2989 (2007).
[CrossRef]

J. Lightwave Technol. (1)

B. Glance, J. Lightwave Technol. 5, 274 (1987).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Other (1)

J. C. Ginn, B. A. Lail, and G. D. Boreman, in Antennas and Propagation Society International Symposium 2006 (IEEE, 2006), pp. 4315–4318.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Unit cell of the reflectarray: gold metal-patch nanoantennas on top of a grounded silicon stand-off layer. a=1.2μm, h=300nm, and t=50nm.

Fig. 2.
Fig. 2.

S-diagram of the unit cell in Fig. 1. The curves are smoother for larger dy and give a better phase resolution for dx.

Fig. 3.
Fig. 3.

16λ×16λ reflectarray metasurface. The enlarged part details dx variations. The value of dx is changed from 400 to 1100 nm in 100 nm steps.

Fig. 4.
Fig. 4.

(a) Two-dimensional normalized intensity of the reflected beam in θ0x=45° and φ0x=0°. (b) φ=0, xz, cut. HPBW is 8°.

Fig. 5.
Fig. 5.

(a) Part of the birefringent nanoantenna metasurface. dx and dy are discretized with steps of 50 nm. (b) and (c) dx and dy versus x for one period. (d) and (e) Theoretical and realized ψx(x,y) and ψy(x,y) for one period. Note that at x=0, the phase delays cannot be realized with any of the available patches.

Fig. 6.
Fig. 6.

(a) and (b) Two-dimensional normalized intensity of the reflected beam for x- and y-polarized illuminations, respectively. The beam is reflected in the θ0x=30° and φ0x=0° direction for the x-polarized illumination and the θ0y=30° and φ0y=0° direction for the y-polarized one. (c) φ=0, xz, cut of both reflected beams.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

ψx(x,y)=k0sinθ0x[xcos(φ0x)+ysin(φ0x)],
ψy(x,y)=k0sinθ0y[xcos(φ0y)+ysin(φ0y)].

Metrics