Abstract

Biological neurons perform information processing using a model called pulse processing, which is both computationally efficient and scalable, adopting the best features of both analog and digital computing. Implementing pulse processing with photonics can result in bandwidths that are billions of times faster than biological neurons and substantially faster than electronics. Neurons have the ability to learn and adapt their processing based on experience through a change in the strength of synaptic connections in response to spiking activity. This mechanism is called spike-timing-dependent plasticity (STDP). Functionally, STDP constitutes a mechanism in which strengths of connections between neurons are based on the timing and order between presynaptic spikes and postsynaptic spikes, essentially forming a pulse lead/lag timing detector that is useful in feedback control and adaptation. Here we report for the first time the demonstration of optical STDP that is useful in pulse lead/lag timing detection and apply it to automatic gain control of a photonic pulse processor.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription