Abstract

We demonstrate an effective mode selector design that enables a terahertz quantum cascade wire laser to have a robust single-mode operation at frequencies much lower than the gain peak. This is achieved by selectively guiding the undesired modes into a lossy session while keeping the desired lasing mode largely unperturbed. The large mode discrimination obtained by this mode selector is necessary to further extend the tuning range to the lower half of the gain curve. Additionally, the connectors of this mode selector conveniently provide electrical bias to the wire lasers without degrading the lasing performance.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Mittleman, Sensing with Terahertz Radiation (Springer, 2003).
  2. P. H. Siegel, IEEE Trans. Microwave Theor. Tech. 52, 2438 (2004).
    [CrossRef]
  3. J. Xu, J. M. Hensley, D. B. Fenner, R. P. Green, L. Mahler, A. Tredicucci, M. G. Allen, F. Beltram, H. E. Beere, and D. A. Ritchie, Appl. Phys. Lett. 91, 121104 (2007).
    [CrossRef]
  4. A. W. M. Lee, B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, Opt. Lett. 35, 910 (2010).
    [CrossRef]
  5. L. Mahler, A. Tredicucci, F. Beltram, H. E. Beere, and D. A. Ritchie, Opt. Express 18, 19185 (2010).
    [CrossRef]
  6. Q. Qin, B. S. Williams, S. Kumar, J. L. Reno, and Q. Hu, Nat. Photonics 3, 732 (2009).
    [CrossRef]
  7. Q. Qin, J. L. Reno, and Q. Hu, Opt. Lett 36, 692 (2011).
    [CrossRef]
  8. B. S. Williams, S. Kumar, H. Callebaut, Q. Hu, and J. L. Reno, Appl. Phys. Lett. 83, 2124 (2003).
    [CrossRef]
  9. S. Kumar and Q. Hu, Phys. Rev. B 80, 245316 (2009).
    [CrossRef]

2011 (1)

Q. Qin, J. L. Reno, and Q. Hu, Opt. Lett 36, 692 (2011).
[CrossRef]

2010 (2)

2009 (2)

Q. Qin, B. S. Williams, S. Kumar, J. L. Reno, and Q. Hu, Nat. Photonics 3, 732 (2009).
[CrossRef]

S. Kumar and Q. Hu, Phys. Rev. B 80, 245316 (2009).
[CrossRef]

2007 (1)

J. Xu, J. M. Hensley, D. B. Fenner, R. P. Green, L. Mahler, A. Tredicucci, M. G. Allen, F. Beltram, H. E. Beere, and D. A. Ritchie, Appl. Phys. Lett. 91, 121104 (2007).
[CrossRef]

2004 (1)

P. H. Siegel, IEEE Trans. Microwave Theor. Tech. 52, 2438 (2004).
[CrossRef]

2003 (1)

B. S. Williams, S. Kumar, H. Callebaut, Q. Hu, and J. L. Reno, Appl. Phys. Lett. 83, 2124 (2003).
[CrossRef]

Allen, M. G.

J. Xu, J. M. Hensley, D. B. Fenner, R. P. Green, L. Mahler, A. Tredicucci, M. G. Allen, F. Beltram, H. E. Beere, and D. A. Ritchie, Appl. Phys. Lett. 91, 121104 (2007).
[CrossRef]

Beere, H. E.

L. Mahler, A. Tredicucci, F. Beltram, H. E. Beere, and D. A. Ritchie, Opt. Express 18, 19185 (2010).
[CrossRef]

J. Xu, J. M. Hensley, D. B. Fenner, R. P. Green, L. Mahler, A. Tredicucci, M. G. Allen, F. Beltram, H. E. Beere, and D. A. Ritchie, Appl. Phys. Lett. 91, 121104 (2007).
[CrossRef]

Beltram, F.

L. Mahler, A. Tredicucci, F. Beltram, H. E. Beere, and D. A. Ritchie, Opt. Express 18, 19185 (2010).
[CrossRef]

J. Xu, J. M. Hensley, D. B. Fenner, R. P. Green, L. Mahler, A. Tredicucci, M. G. Allen, F. Beltram, H. E. Beere, and D. A. Ritchie, Appl. Phys. Lett. 91, 121104 (2007).
[CrossRef]

Callebaut, H.

B. S. Williams, S. Kumar, H. Callebaut, Q. Hu, and J. L. Reno, Appl. Phys. Lett. 83, 2124 (2003).
[CrossRef]

Fenner, D. B.

J. Xu, J. M. Hensley, D. B. Fenner, R. P. Green, L. Mahler, A. Tredicucci, M. G. Allen, F. Beltram, H. E. Beere, and D. A. Ritchie, Appl. Phys. Lett. 91, 121104 (2007).
[CrossRef]

Green, R. P.

J. Xu, J. M. Hensley, D. B. Fenner, R. P. Green, L. Mahler, A. Tredicucci, M. G. Allen, F. Beltram, H. E. Beere, and D. A. Ritchie, Appl. Phys. Lett. 91, 121104 (2007).
[CrossRef]

Hensley, J. M.

J. Xu, J. M. Hensley, D. B. Fenner, R. P. Green, L. Mahler, A. Tredicucci, M. G. Allen, F. Beltram, H. E. Beere, and D. A. Ritchie, Appl. Phys. Lett. 91, 121104 (2007).
[CrossRef]

Hu, Q.

Q. Qin, J. L. Reno, and Q. Hu, Opt. Lett 36, 692 (2011).
[CrossRef]

A. W. M. Lee, B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, Opt. Lett. 35, 910 (2010).
[CrossRef]

Q. Qin, B. S. Williams, S. Kumar, J. L. Reno, and Q. Hu, Nat. Photonics 3, 732 (2009).
[CrossRef]

S. Kumar and Q. Hu, Phys. Rev. B 80, 245316 (2009).
[CrossRef]

B. S. Williams, S. Kumar, H. Callebaut, Q. Hu, and J. L. Reno, Appl. Phys. Lett. 83, 2124 (2003).
[CrossRef]

Kumar, S.

A. W. M. Lee, B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, Opt. Lett. 35, 910 (2010).
[CrossRef]

Q. Qin, B. S. Williams, S. Kumar, J. L. Reno, and Q. Hu, Nat. Photonics 3, 732 (2009).
[CrossRef]

S. Kumar and Q. Hu, Phys. Rev. B 80, 245316 (2009).
[CrossRef]

B. S. Williams, S. Kumar, H. Callebaut, Q. Hu, and J. L. Reno, Appl. Phys. Lett. 83, 2124 (2003).
[CrossRef]

Lee, A. W. M.

Mahler, L.

L. Mahler, A. Tredicucci, F. Beltram, H. E. Beere, and D. A. Ritchie, Opt. Express 18, 19185 (2010).
[CrossRef]

J. Xu, J. M. Hensley, D. B. Fenner, R. P. Green, L. Mahler, A. Tredicucci, M. G. Allen, F. Beltram, H. E. Beere, and D. A. Ritchie, Appl. Phys. Lett. 91, 121104 (2007).
[CrossRef]

Mittleman, D.

D. Mittleman, Sensing with Terahertz Radiation (Springer, 2003).

Qin, Q.

Q. Qin, J. L. Reno, and Q. Hu, Opt. Lett 36, 692 (2011).
[CrossRef]

Q. Qin, B. S. Williams, S. Kumar, J. L. Reno, and Q. Hu, Nat. Photonics 3, 732 (2009).
[CrossRef]

Reno, J. L.

Q. Qin, J. L. Reno, and Q. Hu, Opt. Lett 36, 692 (2011).
[CrossRef]

A. W. M. Lee, B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, Opt. Lett. 35, 910 (2010).
[CrossRef]

Q. Qin, B. S. Williams, S. Kumar, J. L. Reno, and Q. Hu, Nat. Photonics 3, 732 (2009).
[CrossRef]

B. S. Williams, S. Kumar, H. Callebaut, Q. Hu, and J. L. Reno, Appl. Phys. Lett. 83, 2124 (2003).
[CrossRef]

Ritchie, D. A.

L. Mahler, A. Tredicucci, F. Beltram, H. E. Beere, and D. A. Ritchie, Opt. Express 18, 19185 (2010).
[CrossRef]

J. Xu, J. M. Hensley, D. B. Fenner, R. P. Green, L. Mahler, A. Tredicucci, M. G. Allen, F. Beltram, H. E. Beere, and D. A. Ritchie, Appl. Phys. Lett. 91, 121104 (2007).
[CrossRef]

Siegel, P. H.

P. H. Siegel, IEEE Trans. Microwave Theor. Tech. 52, 2438 (2004).
[CrossRef]

Tredicucci, A.

L. Mahler, A. Tredicucci, F. Beltram, H. E. Beere, and D. A. Ritchie, Opt. Express 18, 19185 (2010).
[CrossRef]

J. Xu, J. M. Hensley, D. B. Fenner, R. P. Green, L. Mahler, A. Tredicucci, M. G. Allen, F. Beltram, H. E. Beere, and D. A. Ritchie, Appl. Phys. Lett. 91, 121104 (2007).
[CrossRef]

Williams, B. S.

A. W. M. Lee, B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, Opt. Lett. 35, 910 (2010).
[CrossRef]

Q. Qin, B. S. Williams, S. Kumar, J. L. Reno, and Q. Hu, Nat. Photonics 3, 732 (2009).
[CrossRef]

B. S. Williams, S. Kumar, H. Callebaut, Q. Hu, and J. L. Reno, Appl. Phys. Lett. 83, 2124 (2003).
[CrossRef]

Xu, J.

J. Xu, J. M. Hensley, D. B. Fenner, R. P. Green, L. Mahler, A. Tredicucci, M. G. Allen, F. Beltram, H. E. Beere, and D. A. Ritchie, Appl. Phys. Lett. 91, 121104 (2007).
[CrossRef]

Appl. Phys. Lett. (2)

J. Xu, J. M. Hensley, D. B. Fenner, R. P. Green, L. Mahler, A. Tredicucci, M. G. Allen, F. Beltram, H. E. Beere, and D. A. Ritchie, Appl. Phys. Lett. 91, 121104 (2007).
[CrossRef]

B. S. Williams, S. Kumar, H. Callebaut, Q. Hu, and J. L. Reno, Appl. Phys. Lett. 83, 2124 (2003).
[CrossRef]

IEEE Trans. Microwave Theor. Tech. (1)

P. H. Siegel, IEEE Trans. Microwave Theor. Tech. 52, 2438 (2004).
[CrossRef]

Nat. Photonics (1)

Q. Qin, B. S. Williams, S. Kumar, J. L. Reno, and Q. Hu, Nat. Photonics 3, 732 (2009).
[CrossRef]

Opt. Express (1)

Opt. Lett (1)

Q. Qin, J. L. Reno, and Q. Hu, Opt. Lett 36, 692 (2011).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. B (1)

S. Kumar and Q. Hu, Phys. Rev. B 80, 245316 (2009).
[CrossRef]

Other (1)

D. Mittleman, Sensing with Terahertz Radiation (Springer, 2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(A) Schematic tuning result, in which device M and N started from different frequencies and ended at similar ones. (B) Illustration of the gain-bandwidth usage. The blue (red) box indicates the estimated gain, plotted by the red curve, above (below) the lasing frequency of a bare wire laser.

Fig. 2.
Fig. 2.

(A),(B) Schematics of the five-connector and 11-connector designs, respectively. The two extra connectors are indicated in (B). (C),(D) SEM images of a fabricated 11-connector device. The fabrication procedure is similar to that in [8].

Fig. 3.
Fig. 3.

(A) Color plots of the Ez-field intensity for the first three upper-band modes for a bare DFB wire laser. (B) Mode spectrum of a typical 11-connector design (10.5 μm wide, 14.3 μm periodicity) and plots of the electrical field intensity of the Ez component. Compared to the first-order mode (upper-band-edge mode), the other two are guided into the bonding pad, resulting in a much greater loss. The device boundary can be seen more clearly when the figure is enlarged.

Fig. 4.
Fig. 4.

Normalized spectra of different designs and a schematic gain spectrum. Devices (A) and (B) were a Fabry–Perot device and a five-connector design, respectively. Spectra (C) and (D) were from the 11-connector devices. The 11-connector design provided sufficient mode discrimination for robust single-mode operations, compared with the five-connector design, which resulted in a multimode operation due to limited mode discrimination.

Metrics