Abstract

Joint beam width and spatial coherence length optimization is proposed to maximize the average capacity in partially coherent free-space optical links, under the combined effects of atmospheric turbulence and pointing errors. An optimization metric is introduced to enable feasible translation of the joint optimal transmitter beam parameters into an analogous level of divergence of the received optical beam. Results show that near-ideal average capacity is best achieved through the introduction of a larger receiver aperture and the joint optimization technique.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Z. Ghassemlooy, W. Popoola, and S. Rajbhandari, Optical Wireless Communications: System and Channel Modelling with MATLAB (Taylor & Francis, 2012).
  2. A. A. Farid and S. Hranilovic, J. Lightwave Technol. 25, 1702 (2007).
    [CrossRef]
  3. J. C. Ricklin and F. M. Davidson, J. Opt. Soc. Am. A 19, 1794 (2002).
    [CrossRef]
  4. J. C. Ricklin and F. M. Davidson, J. Opt. Soc. Am. A 20, 856 (2003).
    [CrossRef]
  5. T. J. Schulz, Opt. Lett. 30, 1093 (2005).
    [CrossRef]
  6. C. Chen, H. Yang, X. Feng, and H. Wang, Opt. Lett. 34, 419 (2009).
    [CrossRef]
  7. D. G. Voelz and X. Xiao, Opt. Eng. 48, 036001 (2009).
    [CrossRef]
  8. D. K. Borah and D. G. Voelz, Opt. Express 18, 20746 (2010).
    [CrossRef]
  9. C. Liu, Y. Yao, Y. X. Sun, J. J. Xiao, and X. H. Zhao, Opt. Lett. 35, 3171 (2010).
    [CrossRef]
  10. J. Cang and X. Liu, Opt. Lett. 36, 3335 (2011).
    [CrossRef]
  11. L. C. Andrews and R. L. Philips, Laser Beam Propagation through Random Media (SPIE, 2005).
  12. E. Biglieri, J. Proakis, and S. Shamai, IEEE Trans. Inf. Theory 44, 2619 (1998).
    [CrossRef]

2011 (1)

2010 (2)

2009 (2)

2007 (1)

2005 (1)

2003 (1)

2002 (1)

1998 (1)

E. Biglieri, J. Proakis, and S. Shamai, IEEE Trans. Inf. Theory 44, 2619 (1998).
[CrossRef]

Andrews, L. C.

L. C. Andrews and R. L. Philips, Laser Beam Propagation through Random Media (SPIE, 2005).

Biglieri, E.

E. Biglieri, J. Proakis, and S. Shamai, IEEE Trans. Inf. Theory 44, 2619 (1998).
[CrossRef]

Borah, D. K.

Cang, J.

Chen, C.

Davidson, F. M.

Farid, A. A.

Feng, X.

Ghassemlooy, Z.

Z. Ghassemlooy, W. Popoola, and S. Rajbhandari, Optical Wireless Communications: System and Channel Modelling with MATLAB (Taylor & Francis, 2012).

Hranilovic, S.

Liu, C.

Liu, X.

Philips, R. L.

L. C. Andrews and R. L. Philips, Laser Beam Propagation through Random Media (SPIE, 2005).

Popoola, W.

Z. Ghassemlooy, W. Popoola, and S. Rajbhandari, Optical Wireless Communications: System and Channel Modelling with MATLAB (Taylor & Francis, 2012).

Proakis, J.

E. Biglieri, J. Proakis, and S. Shamai, IEEE Trans. Inf. Theory 44, 2619 (1998).
[CrossRef]

Rajbhandari, S.

Z. Ghassemlooy, W. Popoola, and S. Rajbhandari, Optical Wireless Communications: System and Channel Modelling with MATLAB (Taylor & Francis, 2012).

Ricklin, J. C.

Schulz, T. J.

Shamai, S.

E. Biglieri, J. Proakis, and S. Shamai, IEEE Trans. Inf. Theory 44, 2619 (1998).
[CrossRef]

Sun, Y. X.

Voelz, D. G.

D. K. Borah and D. G. Voelz, Opt. Express 18, 20746 (2010).
[CrossRef]

D. G. Voelz and X. Xiao, Opt. Eng. 48, 036001 (2009).
[CrossRef]

Wang, H.

Xiao, J. J.

Xiao, X.

D. G. Voelz and X. Xiao, Opt. Eng. 48, 036001 (2009).
[CrossRef]

Yang, H.

Yao, Y.

Zhao, X. H.

IEEE Trans. Inf. Theory (1)

E. Biglieri, J. Proakis, and S. Shamai, IEEE Trans. Inf. Theory 44, 2619 (1998).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. A (2)

Opt. Eng. (1)

D. G. Voelz and X. Xiao, Opt. Eng. 48, 036001 (2009).
[CrossRef]

Opt. Express (1)

Opt. Lett. (4)

Other (2)

Z. Ghassemlooy, W. Popoola, and S. Rajbhandari, Optical Wireless Communications: System and Channel Modelling with MATLAB (Taylor & Francis, 2012).

L. C. Andrews and R. L. Philips, Laser Beam Propagation through Random Media (SPIE, 2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Block diagram of a horizontal FSO link.

Fig. 2.
Fig. 2.

Average capacity in terms of (a) the average electrical SNR for different spatial coherence lengths and (b) the spatial coherence length for a variety of beam width settings, at SNR=14dB. The weak turbulence case is considered.

Fig. 3.
Fig. 3.

Corresponding results showing the average capacity against (a) the spatial coherence length and (b) the beam width at SNR=14dB, for the strong turbulence case.

Fig. 4.
Fig. 4.

Optimal average capacity in terms of the Rytov variance, for (2σpe/D)={15.0,7.5,6.0,3.0} at SNR=14dB. The cases of [w0;lc]=[0.05;0.01] (divergent) and [0.05; 0.10] (coherent) and the values for Aζopt are depicted for (2σpe/D)=15.0.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

fh(h)=ξ2(A0hl)ξ2hξ21h/A0hlhsξ2fhs(hs)dhs,
σI2(0)4.42σR2ΛL5/6σpe2wL2+3.86σR2{0.40[(1+2ΘL)2+4ΛL2]5/12×cos[56tan1(1+2ΘL2ΛL)]1116ΛL5/6},
AG=16π01δdδexp{D2δ2ρ02(2+ρ02w02Λn2ρ02ϕ2wL2)}×[cos1(δ)δ1δ2].
C=x=01PX(x)f(y|x)×log2[f(y|x)m=0,1f(y|x=m)PX(m)]dy,
f(y|x)={12πσn2exp[y22σn2],x=012πσn20exp[(y2PFSOγh)22σn2]fh(h)dh,x=1.

Metrics