Abstract

Repetition frequency pulling effects are found to exist in asynchronous harmonic mode-locked fiber soliton lasers. The deviation frequency of asynchronous mode-locking is found to be dependent on the active modulation depth, not wholly determined by the difference between the intracavity active modulation frequency and the cavity harmonic repetition frequency. Transition from asynchronous to synchronous mode-locking will also occur when the modulation depth is above the threshold. Independent repetition frequency control of asynchronous mode-locked laser can be achieved through the effects.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. R. Doerr, H. A. Haus, and E. P. Ippen, Opt. Lett. 19, 1958 (1994).
    [CrossRef]
  2. H. A. Haus, D. J. Jones, E. P. Ippen, and W. S. Wong, J. Lightwave Technol. 14, 622 (1996).
    [CrossRef]
  3. W.-W. Hsiang, C.-Y. Lin, M.-F. Tien, and Y. Lai, Opt. Lett. 30, 2493 (2005).
    [CrossRef]
  4. W.-W. Hsiang, C.-Y. Lin, N.-K. Sooi, and Y. Lai, Opt. Express 14, 1822 (2006).
    [CrossRef]
  5. W.-W. Hsiang, H.-C. Chang, and Y. Lai, IEEE J. Quantum Electron. 46, 299n (2010).
    [CrossRef]
  6. B. Razavi, IEEE J. Solid-State Circuits 39, 1415 (2004).
    [CrossRef]
  7. S.-S. Jyu and Y. Lai, in CLEO: Science and Innovations, OSA Technical Digest (online) (Optical Society of America, 2012), paper CF1N.2.
  8. M. Nakazawa and M. Yoshida, Opt. Lett. 33, 1059 (2008).
    [CrossRef]
  9. M. Nakazawa, K. Kasai, and M. Yoshida, Opt. Lett. 33, 2641 (2008).
    [CrossRef]

2010

W.-W. Hsiang, H.-C. Chang, and Y. Lai, IEEE J. Quantum Electron. 46, 299n (2010).
[CrossRef]

2008

2006

2005

2004

B. Razavi, IEEE J. Solid-State Circuits 39, 1415 (2004).
[CrossRef]

1996

H. A. Haus, D. J. Jones, E. P. Ippen, and W. S. Wong, J. Lightwave Technol. 14, 622 (1996).
[CrossRef]

1994

Chang, H.-C.

W.-W. Hsiang, H.-C. Chang, and Y. Lai, IEEE J. Quantum Electron. 46, 299n (2010).
[CrossRef]

Doerr, C. R.

Haus, H. A.

H. A. Haus, D. J. Jones, E. P. Ippen, and W. S. Wong, J. Lightwave Technol. 14, 622 (1996).
[CrossRef]

C. R. Doerr, H. A. Haus, and E. P. Ippen, Opt. Lett. 19, 1958 (1994).
[CrossRef]

Hsiang, W.-W.

Ippen, E. P.

H. A. Haus, D. J. Jones, E. P. Ippen, and W. S. Wong, J. Lightwave Technol. 14, 622 (1996).
[CrossRef]

C. R. Doerr, H. A. Haus, and E. P. Ippen, Opt. Lett. 19, 1958 (1994).
[CrossRef]

Jones, D. J.

H. A. Haus, D. J. Jones, E. P. Ippen, and W. S. Wong, J. Lightwave Technol. 14, 622 (1996).
[CrossRef]

Jyu, S.-S.

S.-S. Jyu and Y. Lai, in CLEO: Science and Innovations, OSA Technical Digest (online) (Optical Society of America, 2012), paper CF1N.2.

Kasai, K.

Lai, Y.

W.-W. Hsiang, H.-C. Chang, and Y. Lai, IEEE J. Quantum Electron. 46, 299n (2010).
[CrossRef]

W.-W. Hsiang, C.-Y. Lin, N.-K. Sooi, and Y. Lai, Opt. Express 14, 1822 (2006).
[CrossRef]

W.-W. Hsiang, C.-Y. Lin, M.-F. Tien, and Y. Lai, Opt. Lett. 30, 2493 (2005).
[CrossRef]

S.-S. Jyu and Y. Lai, in CLEO: Science and Innovations, OSA Technical Digest (online) (Optical Society of America, 2012), paper CF1N.2.

Lin, C.-Y.

Nakazawa, M.

Razavi, B.

B. Razavi, IEEE J. Solid-State Circuits 39, 1415 (2004).
[CrossRef]

Sooi, N.-K.

Tien, M.-F.

Wong, W. S.

H. A. Haus, D. J. Jones, E. P. Ippen, and W. S. Wong, J. Lightwave Technol. 14, 622 (1996).
[CrossRef]

Yoshida, M.

IEEE J. Quantum Electron.

W.-W. Hsiang, H.-C. Chang, and Y. Lai, IEEE J. Quantum Electron. 46, 299n (2010).
[CrossRef]

IEEE J. Solid-State Circuits

B. Razavi, IEEE J. Solid-State Circuits 39, 1415 (2004).
[CrossRef]

J. Lightwave Technol.

H. A. Haus, D. J. Jones, E. P. Ippen, and W. S. Wong, J. Lightwave Technol. 14, 622 (1996).
[CrossRef]

Opt. Express

Opt. Lett.

Other

S.-S. Jyu and Y. Lai, in CLEO: Science and Innovations, OSA Technical Digest (online) (Optical Society of America, 2012), paper CF1N.2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Pulse timing position evolution of asynchronous mode-locking under different modulation depths.

Fig. 2.
Fig. 2.

Schematic diagram for illustrating the repetition frequency pulling effects.

Fig. 3.
Fig. 3.

(a) Deviation frequency fASM as a function of the modulation depth and the detuning frequency fd; (b) 2D plot of the same results with varying detuning frequency fd. The main simulation parameters are the same as in Fig. 1.

Fig. 4.
Fig. 4.

Schematic setup of the 10 GHz Er-doped fiber soliton laser.

Fig. 5.
Fig. 5.

Experimental deviation frequency versus modulation depth.

Fig. 6.
Fig. 6.

Demonstration of deviation frequency locking through the frequency pulling effects.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

u(T,t)T=(g01+|u|2dtEsl0)u+(dr+jdi)2ut2+(kr+jki)|u|2u+jMcos[ωm(t+RT)]u.
u(T,t)=a(T)sech(tt0(T)τ(T))1+jβ(T)ej[ω(T)(tt0(T))+θ(T)],
dωdT=Mωmsin{ωm[t0(T)+RT]}4dr(1+β2)3τ2ω,
dt0dT=2diω+2drβω.
Mωm|4dr(1+β2)3τ2R2di+2drβ|.

Metrics