Abstract

Single microchannel high-temperature fiber sensors were fabricated by drilling a microchannel across the fiber core near the end of the common single-mode fiber using femtosecond laser-induced water breakdown. Then the microchannel was annealed by the arc discharge to smooth its inwall. The two sides of microchannel and the end surface of the fiber constitute three reflective mirrors, which form a three-wave Fabry–Pérot interferometer (FPI). The fabricated FPI can be used as a high-temperature sensor in harsh environments due to its large temperature range (up to 1000°C), high linearity, miniaturized size, and perfect mechanical property.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. V. Nguyen, D. Hwang, S. Moon, D. S. Moon, and Y. Chung, Opt. Express 16, 11369 (2008).
    [CrossRef]
  2. B. W. Zhang and M. Kahrizi, IEEE Sens. J. 7, 586 (2007).
    [CrossRef]
  3. D. M. Hernández, V. P. Minkovich, and J. Villatoro, IEEE Photon. Technol. Lett. 18, 511 (2006).
    [CrossRef]
  4. Y. Z. Zhu, Z. Y. Huang, F. B. Shen, and A. B. Wang, Opt. Lett. 30, 711 (2005).
    [CrossRef]
  5. W. H. Tsai and C. J. Lin, J. Lightwave Technol. 19, 682 (2001).
    [CrossRef]
  6. T. Zhu, T. Ke, Y. J. Rao, and K. S. Chiang, Opt. Commun. 283, 3683 (2010).
    [CrossRef]
  7. J. L. Kou, J. Feng, L. Ye, F. Xu, and Y. Q. Lu, Opt. Express 18, 14245 (2010).
    [CrossRef]
  8. A. B. Wang, S. Gollapudi, K. A. Murphy, R. G. May, and R. O. Claus, Opt. Lett. 17, 1021 (1992).
    [CrossRef]
  9. D. H. Wang, S. J. Wang, and P. G. Jia, Opt. Lett. 37, 2046 (2012).
    [CrossRef]
  10. D. W. Duan, Y. J. Rao, and T. Zhu, J. Opt. Soc. Am. B 29, 912 (2012).
    [CrossRef]
  11. C. R. Liao, T. Y. Hu, and D. N. Wang, Opt. Express 20, 22813 (2012).
    [CrossRef]
  12. V. R. Machavaram, R. A. Badcock, and G. F. Fernando, Sens. Actuators A Phys. 138, 248 (2007).
    [CrossRef]
  13. X. P. Chen, F. B. Shen, Z. Wang, Z. Y. Huang, and A. B. Wang, Appl. Opt. 45, 7760 (2006).
    [CrossRef]
  14. E. Cibula and D. Donlagic, Opt. Express 15, 8719 (2007).
    [CrossRef]
  15. Z. L. Ran, Y. J. Rao, W. J. Liu, X. Liao, and K. S. Chiang, Opt. Express 16, 2252 (2008).
    [CrossRef]
  16. D. W. Duan, Y. J. Rao, Y. S. Hou, and T. Zhu, Appl. Opt. 51, 1033 (2012).
    [CrossRef]
  17. Y. J. Rao, M. Deng, D. W. Duan, X. C. Yang, T. Zhu, and G. H. Cheng, Opt. Express 15, 14123 (2007).
    [CrossRef]
  18. T. Wei, Y. K. Han, H. L. Tsai, and H. Xiao, Opt. Lett. 33, 536 (2008).
    [CrossRef]
  19. C. Martelli, P. Olivero, J. Canning, N. Groothoff, B. Gibson, and S. Huntington, Opt. Lett. 32, 1575 (2007).
    [CrossRef]
  20. F. Wang, W. Yuan, O. Hansen, and O. Bang, Opt. Express 19, 17585 (2011).
    [CrossRef]
  21. W. Yuan, F. Wang, A. Savenko, D. Petersen, and O. Bang, Rev. Sci. Instrum. 82, 076103 (2011).
    [CrossRef]
  22. Y. Li and S. L. Qu, Opt. Lett. 36, 4236 (2011).
    [CrossRef]
  23. Y. Lai, K. Zhou, L. Zhang, and I. Bennion, Opt. Lett 31, 2559 (2006).
    [CrossRef]

2012 (4)

2011 (3)

2010 (2)

T. Zhu, T. Ke, Y. J. Rao, and K. S. Chiang, Opt. Commun. 283, 3683 (2010).
[CrossRef]

J. L. Kou, J. Feng, L. Ye, F. Xu, and Y. Q. Lu, Opt. Express 18, 14245 (2010).
[CrossRef]

2008 (3)

2007 (5)

2006 (3)

X. P. Chen, F. B. Shen, Z. Wang, Z. Y. Huang, and A. B. Wang, Appl. Opt. 45, 7760 (2006).
[CrossRef]

D. M. Hernández, V. P. Minkovich, and J. Villatoro, IEEE Photon. Technol. Lett. 18, 511 (2006).
[CrossRef]

Y. Lai, K. Zhou, L. Zhang, and I. Bennion, Opt. Lett 31, 2559 (2006).
[CrossRef]

2005 (1)

2001 (1)

1992 (1)

Badcock, R. A.

V. R. Machavaram, R. A. Badcock, and G. F. Fernando, Sens. Actuators A Phys. 138, 248 (2007).
[CrossRef]

Bang, O.

F. Wang, W. Yuan, O. Hansen, and O. Bang, Opt. Express 19, 17585 (2011).
[CrossRef]

W. Yuan, F. Wang, A. Savenko, D. Petersen, and O. Bang, Rev. Sci. Instrum. 82, 076103 (2011).
[CrossRef]

Bennion, I.

Y. Lai, K. Zhou, L. Zhang, and I. Bennion, Opt. Lett 31, 2559 (2006).
[CrossRef]

Canning, J.

Chen, X. P.

Cheng, G. H.

Chiang, K. S.

T. Zhu, T. Ke, Y. J. Rao, and K. S. Chiang, Opt. Commun. 283, 3683 (2010).
[CrossRef]

Z. L. Ran, Y. J. Rao, W. J. Liu, X. Liao, and K. S. Chiang, Opt. Express 16, 2252 (2008).
[CrossRef]

Chung, Y.

Cibula, E.

Claus, R. O.

Deng, M.

Donlagic, D.

Duan, D. W.

Feng, J.

Fernando, G. F.

V. R. Machavaram, R. A. Badcock, and G. F. Fernando, Sens. Actuators A Phys. 138, 248 (2007).
[CrossRef]

Gibson, B.

Gollapudi, S.

Groothoff, N.

Han, Y. K.

Hansen, O.

Hernández, D. M.

D. M. Hernández, V. P. Minkovich, and J. Villatoro, IEEE Photon. Technol. Lett. 18, 511 (2006).
[CrossRef]

Hou, Y. S.

Hu, T. Y.

Huang, Z. Y.

Huntington, S.

Hwang, D.

Jia, P. G.

Kahrizi, M.

B. W. Zhang and M. Kahrizi, IEEE Sens. J. 7, 586 (2007).
[CrossRef]

Ke, T.

T. Zhu, T. Ke, Y. J. Rao, and K. S. Chiang, Opt. Commun. 283, 3683 (2010).
[CrossRef]

Kou, J. L.

Lai, Y.

Y. Lai, K. Zhou, L. Zhang, and I. Bennion, Opt. Lett 31, 2559 (2006).
[CrossRef]

Li, Y.

Liao, C. R.

Liao, X.

Lin, C. J.

Liu, W. J.

Lu, Y. Q.

Machavaram, V. R.

V. R. Machavaram, R. A. Badcock, and G. F. Fernando, Sens. Actuators A Phys. 138, 248 (2007).
[CrossRef]

Martelli, C.

May, R. G.

Minkovich, V. P.

D. M. Hernández, V. P. Minkovich, and J. Villatoro, IEEE Photon. Technol. Lett. 18, 511 (2006).
[CrossRef]

Moon, D. S.

Moon, S.

Murphy, K. A.

Nguyen, L. V.

Olivero, P.

Petersen, D.

W. Yuan, F. Wang, A. Savenko, D. Petersen, and O. Bang, Rev. Sci. Instrum. 82, 076103 (2011).
[CrossRef]

Qu, S. L.

Ran, Z. L.

Rao, Y. J.

Savenko, A.

W. Yuan, F. Wang, A. Savenko, D. Petersen, and O. Bang, Rev. Sci. Instrum. 82, 076103 (2011).
[CrossRef]

Shen, F. B.

Tsai, H. L.

Tsai, W. H.

Villatoro, J.

D. M. Hernández, V. P. Minkovich, and J. Villatoro, IEEE Photon. Technol. Lett. 18, 511 (2006).
[CrossRef]

Wang, A. B.

Wang, D. H.

Wang, D. N.

Wang, F.

W. Yuan, F. Wang, A. Savenko, D. Petersen, and O. Bang, Rev. Sci. Instrum. 82, 076103 (2011).
[CrossRef]

F. Wang, W. Yuan, O. Hansen, and O. Bang, Opt. Express 19, 17585 (2011).
[CrossRef]

Wang, S. J.

Wang, Z.

Wei, T.

Xiao, H.

Xu, F.

Yang, X. C.

Ye, L.

Yuan, W.

F. Wang, W. Yuan, O. Hansen, and O. Bang, Opt. Express 19, 17585 (2011).
[CrossRef]

W. Yuan, F. Wang, A. Savenko, D. Petersen, and O. Bang, Rev. Sci. Instrum. 82, 076103 (2011).
[CrossRef]

Zhang, B. W.

B. W. Zhang and M. Kahrizi, IEEE Sens. J. 7, 586 (2007).
[CrossRef]

Zhang, L.

Y. Lai, K. Zhou, L. Zhang, and I. Bennion, Opt. Lett 31, 2559 (2006).
[CrossRef]

Zhou, K.

Y. Lai, K. Zhou, L. Zhang, and I. Bennion, Opt. Lett 31, 2559 (2006).
[CrossRef]

Zhu, T.

Zhu, Y. Z.

Appl. Opt. (2)

IEEE Photon. Technol. Lett. (1)

D. M. Hernández, V. P. Minkovich, and J. Villatoro, IEEE Photon. Technol. Lett. 18, 511 (2006).
[CrossRef]

IEEE Sens. J. (1)

B. W. Zhang and M. Kahrizi, IEEE Sens. J. 7, 586 (2007).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (1)

Opt. Commun. (1)

T. Zhu, T. Ke, Y. J. Rao, and K. S. Chiang, Opt. Commun. 283, 3683 (2010).
[CrossRef]

Opt. Express (7)

Opt. Lett (1)

Y. Lai, K. Zhou, L. Zhang, and I. Bennion, Opt. Lett 31, 2559 (2006).
[CrossRef]

Opt. Lett. (6)

Rev. Sci. Instrum. (1)

W. Yuan, F. Wang, A. Savenko, D. Petersen, and O. Bang, Rev. Sci. Instrum. 82, 076103 (2011).
[CrossRef]

Sens. Actuators A Phys. (1)

V. R. Machavaram, R. A. Badcock, and G. F. Fernando, Sens. Actuators A Phys. 138, 248 (2007).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Setup for the drilling microchannel in optic fiber using femtosecond laser-induced water breakdown.

Fig. 2.
Fig. 2.

(a) Side view of the microchannel near the end of SMF before annealing. (b) Opening of the microchannel before annealing. (c) Side view of the microchannel after annealing. (d) Schematic of the microchannel based three-wave FPI in fiber.

Fig. 3.
Fig. 3.

Measured reflection spectrum of the FPI in fiber.

Fig. 4.
Fig. 4.

(a) Measured reflection spectrum change of the FPI in fiber to different temperatures in both heating and cooling processes. (b) Wavelength shift of interference peak at 1464.5 nm with the increase of temperature.

Metrics