Abstract

Single microchannel high-temperature fiber sensors were fabricated by drilling a microchannel across the fiber core near the end of the common single-mode fiber using femtosecond laser-induced water breakdown. Then the microchannel was annealed by the arc discharge to smooth its inwall. The two sides of microchannel and the end surface of the fiber constitute three reflective mirrors, which form a three-wave Fabry–Pérot interferometer (FPI). The fabricated FPI can be used as a high-temperature sensor in harsh environments due to its large temperature range (up to 1000°C), high linearity, miniaturized size, and perfect mechanical property.

© 2013 Optical Society of America

Full Article  |  PDF Article
Related Articles
Refractive index measurement using photonic crystal fiber-based Fabry-Perot interferometer

Ming Deng, Chang-Ping Tang, Tao Zhu, Yun-Jiang Rao, Lai-Cai Xu, and Meng Han
Appl. Opt. 49(9) 1593-1598 (2010)

High-pressure and high-temperature characteristics of a Fabry–Perot interferometer based on photonic crystal fiber

Chuang Wu, H. Y. Fu, Khurram Karim Qureshi, Bai-Ou Guan, and H. Y. Tam
Opt. Lett. 36(3) 412-414 (2011)

Fiber-tip micro-cavity for temperature and transverse load sensing

Jun Ma, Jian Ju, Long Jin, Wei Jin, and Dongning Wang
Opt. Express 19(13) 12418-12426 (2011)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription