Abstract

We investigate the interaction between fundamental and third harmonic fields in a nonlinear waveguide. We develop a method for evaluating the maximum efficiency of third harmonic (upconversion) and one-third harmonic (downconversion) generation by considering the solitonic behavior of the interaction. This method can be used to engineer waveguide parameters and identify the input power that enables maximum conversion efficiency to be achieved.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Armstrong, N. Bloembergen, J. Ducuing, and P. Pershan, Phys. Rev. 127, 1918 (1962).
    [CrossRef]
  2. H. Puell and C. Vidal, IEEE J. Quantum Electron. 14, 364 (1978).
    [CrossRef]
  3. R. S. Tasgal, Y. B. Band, and B. A. Malomed, Phys. Rev. E 72, 016624 (2005).
    [CrossRef]
  4. V. Grubsky and A. Savchenko, Opt. Express 13, 6798 (2005).
    [CrossRef]
  5. T. Lee, Y. Jung, C. A. Codemard, M. Ding, N. G. R. Broderick, and G. Brambilla, Opt. Express 20, 8503(2012).
    [CrossRef]
  6. A. Coillet and P. Grelu, Opt. Commun. 285, 3493 (2012).
    [CrossRef]
  7. M. Corona, K. Garay-Palmett, and A. B. U’Ren, Opt. Lett. 36, 190 (2011).
    [CrossRef]
  8. S. Richard, K. Bencheikh, B. Boulanger, and J. A. Levenson, Opt. Lett. 36, 3000 (2011).
    [CrossRef]
  9. W. Zhang, M. A. Lohe, T. M. Monro, and S. V. Afshar, IEEE Photon. Technol. Lett. 24, 1453 (2012).
    [CrossRef]
  10. S. Afshar V., M. A. Lohe, W. Q. Zhang, and T. M. Monro, Opt. Express 20, 14514 (2012).
    [CrossRef]
  11. Y. Chen, J. Opt. Soc. Am. B 6, 1986 (1989).
    [CrossRef]

2012 (4)

2011 (2)

2005 (2)

R. S. Tasgal, Y. B. Band, and B. A. Malomed, Phys. Rev. E 72, 016624 (2005).
[CrossRef]

V. Grubsky and A. Savchenko, Opt. Express 13, 6798 (2005).
[CrossRef]

1989 (1)

1978 (1)

H. Puell and C. Vidal, IEEE J. Quantum Electron. 14, 364 (1978).
[CrossRef]

1962 (1)

J. Armstrong, N. Bloembergen, J. Ducuing, and P. Pershan, Phys. Rev. 127, 1918 (1962).
[CrossRef]

Afshar, S. V.

W. Zhang, M. A. Lohe, T. M. Monro, and S. V. Afshar, IEEE Photon. Technol. Lett. 24, 1453 (2012).
[CrossRef]

Afshar V., S.

Armstrong, J.

J. Armstrong, N. Bloembergen, J. Ducuing, and P. Pershan, Phys. Rev. 127, 1918 (1962).
[CrossRef]

Band, Y. B.

R. S. Tasgal, Y. B. Band, and B. A. Malomed, Phys. Rev. E 72, 016624 (2005).
[CrossRef]

Bencheikh, K.

Bloembergen, N.

J. Armstrong, N. Bloembergen, J. Ducuing, and P. Pershan, Phys. Rev. 127, 1918 (1962).
[CrossRef]

Boulanger, B.

Brambilla, G.

Broderick, N. G. R.

Chen, Y.

Codemard, C. A.

Coillet, A.

A. Coillet and P. Grelu, Opt. Commun. 285, 3493 (2012).
[CrossRef]

Corona, M.

Ding, M.

Ducuing, J.

J. Armstrong, N. Bloembergen, J. Ducuing, and P. Pershan, Phys. Rev. 127, 1918 (1962).
[CrossRef]

Garay-Palmett, K.

Grelu, P.

A. Coillet and P. Grelu, Opt. Commun. 285, 3493 (2012).
[CrossRef]

Grubsky, V.

Jung, Y.

Lee, T.

Levenson, J. A.

Lohe, M. A.

W. Zhang, M. A. Lohe, T. M. Monro, and S. V. Afshar, IEEE Photon. Technol. Lett. 24, 1453 (2012).
[CrossRef]

S. Afshar V., M. A. Lohe, W. Q. Zhang, and T. M. Monro, Opt. Express 20, 14514 (2012).
[CrossRef]

Malomed, B. A.

R. S. Tasgal, Y. B. Band, and B. A. Malomed, Phys. Rev. E 72, 016624 (2005).
[CrossRef]

Monro, T. M.

S. Afshar V., M. A. Lohe, W. Q. Zhang, and T. M. Monro, Opt. Express 20, 14514 (2012).
[CrossRef]

W. Zhang, M. A. Lohe, T. M. Monro, and S. V. Afshar, IEEE Photon. Technol. Lett. 24, 1453 (2012).
[CrossRef]

Pershan, P.

J. Armstrong, N. Bloembergen, J. Ducuing, and P. Pershan, Phys. Rev. 127, 1918 (1962).
[CrossRef]

Puell, H.

H. Puell and C. Vidal, IEEE J. Quantum Electron. 14, 364 (1978).
[CrossRef]

Richard, S.

Savchenko, A.

Tasgal, R. S.

R. S. Tasgal, Y. B. Band, and B. A. Malomed, Phys. Rev. E 72, 016624 (2005).
[CrossRef]

U’Ren, A. B.

Vidal, C.

H. Puell and C. Vidal, IEEE J. Quantum Electron. 14, 364 (1978).
[CrossRef]

Zhang, W.

W. Zhang, M. A. Lohe, T. M. Monro, and S. V. Afshar, IEEE Photon. Technol. Lett. 24, 1453 (2012).
[CrossRef]

Zhang, W. Q.

IEEE J. Quantum Electron. (1)

H. Puell and C. Vidal, IEEE J. Quantum Electron. 14, 364 (1978).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

W. Zhang, M. A. Lohe, T. M. Monro, and S. V. Afshar, IEEE Photon. Technol. Lett. 24, 1453 (2012).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Commun. (1)

A. Coillet and P. Grelu, Opt. Commun. 285, 3493 (2012).
[CrossRef]

Opt. Express (3)

Opt. Lett. (2)

Phys. Rev. (1)

J. Armstrong, N. Bloembergen, J. Ducuing, and P. Pershan, Phys. Rev. 127, 1918 (1962).
[CrossRef]

Phys. Rev. E (1)

R. S. Tasgal, Y. B. Band, and B. A. Malomed, Phys. Rev. E 72, 016624 (2005).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1.
Fig. 1.

(a) Region (a and b values) for which p(v) has three real roots (fixed points) where one of them is unstable (green). (b) Contours of high conversion efficiency values of Δv within the unstable region. Red dot corresponds to efficiency 85.6%.

Fig. 2.
Fig. 2.

(a) Phase space representation for (a,b)=(1,1) showing trajectories of constant H. Red (lower) and green (upper) dots are unstable and stable fixed points, respectively, and the red trajectory (connecting lower dots) represents the soliton solution. (b) Examples of power conversion for OTHG (black) and THG (blue), respectively.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

A1z=iγ0[(J1|A1|2+2J2|A3|2)A1+J3(A1*)2A3eiδβz],A3z=iγ0[(6J2|A1|2+3J5|A3|2)A3+J3*A13eiδβz],
dvdτ=2vv(1v)sinθ,
dθdτ=a+2bv+(4v3)v1vcosθ,
H(v,θ)=avbv2+2vv(1v)cosθ,
v˙2=4v3(1v)(H0+av+bv2)2=Q(v).

Metrics