Abstract

The only effective method of fiber Bragg grating (FBG) strain modulation has been by changing the distance between its two fixed ends. We demonstrate an alternative that is more sensitive to force based on the nonlinear amplification relationship between a transverse force applied to a stretched string and its induced axial force. It may improve the sensitivity and size of an FBG force sensor, reduce the number of FBGs needed for multiaxial force monitoring, and control the resonant frequency of an FBG accelerometer.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Lee, Opt. Fiber Technol. 9, 57 (2003).
    [CrossRef]
  2. M. Jones, Nat. Photonics 2, 153 (2008).
    [CrossRef]
  3. W. W. Morey and W. L. Glomb, “Incorporated Bragg filter temperature compensated optical waveguide device,” U.S. patent 5,042,898 (August27, 1991).
  4. G. W. Yoffe, P. A. Krug, F. Ouellette, and D. A. Thorncraft, Appl. Opt. 34, 6859 (1995).
    [CrossRef]
  5. A. Stefani, S. Andresen, W. Yuan, N. Herholdt-Rasmussen, and O. Bang, IEEE Photon. Technol. Lett. 24, 763 (2012).
    [CrossRef]
  6. J. Jung, H. Nam, B. Lee, J. O. Byun, and N. S. Kim, Appl. Opt. 38, 2752 (1999).
    [CrossRef]
  7. K. Li, Z. A. Zhou, and A. Liu, Chin. Opt. Lett. 7, 121 (2009).
    [CrossRef]
  8. K. Li and Z. A. Zhou, Chin. Opt. Lett. 7, 191 (2009).
    [CrossRef]
  9. H. Y. Au, S. K. Khijwania, H. Y. Fu, W. H. Chung, and H. Y. Tam, J. Lightwave Technol. 29, 1714 (2011).
    [CrossRef]
  10. H. J. Chen, L. Wang, and W. F. Liu, Appl. Opt. 47, 556 (2008).
    [CrossRef]
  11. X. Y. Dong, X. F. Yang, C. L. Zhao, L. Ding, P. Shum, and N. Q. Ngo, Smart Mater. Struct. 14, N7 (2005).
    [CrossRef]
  12. D. Reitze, Nat. Photonics 2, 582 (2008).
    [CrossRef]

2012

A. Stefani, S. Andresen, W. Yuan, N. Herholdt-Rasmussen, and O. Bang, IEEE Photon. Technol. Lett. 24, 763 (2012).
[CrossRef]

2011

2009

2008

M. Jones, Nat. Photonics 2, 153 (2008).
[CrossRef]

D. Reitze, Nat. Photonics 2, 582 (2008).
[CrossRef]

H. J. Chen, L. Wang, and W. F. Liu, Appl. Opt. 47, 556 (2008).
[CrossRef]

2005

X. Y. Dong, X. F. Yang, C. L. Zhao, L. Ding, P. Shum, and N. Q. Ngo, Smart Mater. Struct. 14, N7 (2005).
[CrossRef]

2003

B. Lee, Opt. Fiber Technol. 9, 57 (2003).
[CrossRef]

1999

1995

Andresen, S.

A. Stefani, S. Andresen, W. Yuan, N. Herholdt-Rasmussen, and O. Bang, IEEE Photon. Technol. Lett. 24, 763 (2012).
[CrossRef]

Au, H. Y.

Bang, O.

A. Stefani, S. Andresen, W. Yuan, N. Herholdt-Rasmussen, and O. Bang, IEEE Photon. Technol. Lett. 24, 763 (2012).
[CrossRef]

Byun, J. O.

Chen, H. J.

Chung, W. H.

Ding, L.

X. Y. Dong, X. F. Yang, C. L. Zhao, L. Ding, P. Shum, and N. Q. Ngo, Smart Mater. Struct. 14, N7 (2005).
[CrossRef]

Dong, X. Y.

X. Y. Dong, X. F. Yang, C. L. Zhao, L. Ding, P. Shum, and N. Q. Ngo, Smart Mater. Struct. 14, N7 (2005).
[CrossRef]

Fu, H. Y.

Glomb, W. L.

W. W. Morey and W. L. Glomb, “Incorporated Bragg filter temperature compensated optical waveguide device,” U.S. patent 5,042,898 (August27, 1991).

Herholdt-Rasmussen, N.

A. Stefani, S. Andresen, W. Yuan, N. Herholdt-Rasmussen, and O. Bang, IEEE Photon. Technol. Lett. 24, 763 (2012).
[CrossRef]

Jones, M.

M. Jones, Nat. Photonics 2, 153 (2008).
[CrossRef]

Jung, J.

Khijwania, S. K.

Kim, N. S.

Krug, P. A.

Lee, B.

Li, K.

Liu, A.

Liu, W. F.

Morey, W. W.

W. W. Morey and W. L. Glomb, “Incorporated Bragg filter temperature compensated optical waveguide device,” U.S. patent 5,042,898 (August27, 1991).

Nam, H.

Ngo, N. Q.

X. Y. Dong, X. F. Yang, C. L. Zhao, L. Ding, P. Shum, and N. Q. Ngo, Smart Mater. Struct. 14, N7 (2005).
[CrossRef]

Ouellette, F.

Reitze, D.

D. Reitze, Nat. Photonics 2, 582 (2008).
[CrossRef]

Shum, P.

X. Y. Dong, X. F. Yang, C. L. Zhao, L. Ding, P. Shum, and N. Q. Ngo, Smart Mater. Struct. 14, N7 (2005).
[CrossRef]

Stefani, A.

A. Stefani, S. Andresen, W. Yuan, N. Herholdt-Rasmussen, and O. Bang, IEEE Photon. Technol. Lett. 24, 763 (2012).
[CrossRef]

Tam, H. Y.

Thorncraft, D. A.

Wang, L.

Yang, X. F.

X. Y. Dong, X. F. Yang, C. L. Zhao, L. Ding, P. Shum, and N. Q. Ngo, Smart Mater. Struct. 14, N7 (2005).
[CrossRef]

Yoffe, G. W.

Yuan, W.

A. Stefani, S. Andresen, W. Yuan, N. Herholdt-Rasmussen, and O. Bang, IEEE Photon. Technol. Lett. 24, 763 (2012).
[CrossRef]

Zhao, C. L.

X. Y. Dong, X. F. Yang, C. L. Zhao, L. Ding, P. Shum, and N. Q. Ngo, Smart Mater. Struct. 14, N7 (2005).
[CrossRef]

Zhou, Z. A.

Appl. Opt.

Chin. Opt. Lett.

IEEE Photon. Technol. Lett.

A. Stefani, S. Andresen, W. Yuan, N. Herholdt-Rasmussen, and O. Bang, IEEE Photon. Technol. Lett. 24, 763 (2012).
[CrossRef]

J. Lightwave Technol.

Nat. Photonics

M. Jones, Nat. Photonics 2, 153 (2008).
[CrossRef]

D. Reitze, Nat. Photonics 2, 582 (2008).
[CrossRef]

Opt. Fiber Technol.

B. Lee, Opt. Fiber Technol. 9, 57 (2003).
[CrossRef]

Smart Mater. Struct.

X. Y. Dong, X. F. Yang, C. L. Zhao, L. Ding, P. Shum, and N. Q. Ngo, Smart Mater. Struct. 14, N7 (2005).
[CrossRef]

Other

W. W. Morey and W. L. Glomb, “Incorporated Bragg filter temperature compensated optical waveguide device,” U.S. patent 5,042,898 (August27, 1991).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Transverse force applied to a stretched string. The inset is the force diagram of the point C’ of the string.

Fig. 2.
Fig. 2.

Setups of the axial-force-wavelength (a), strain-wavelength (b), and transverse-force wavelength (c) experiments.

Fig. 3.
Fig. 3.

Axial-force-wavelength and strain-wavelength responses of an FBG.

Fig. 4.
Fig. 4.

Amplification of the transverse forces applied to an FBG at the middle (0.5L) (a) and 0.35L (b) with different prestretches.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Δε=x2+y2+(Lx)2+y2LL,
ΔFlFt=Δε(ε+Δε)(yx2+y2+y(Lx)2+y2).

Metrics