Abstract

Submicrometer air gap structure has formed on diffuse reflection structure to improve light reflectance. Covering polymer or liquid on a diffuse reflector to make optical components induces the severe decrease of the total reflectance, since the diffuse reflected angle of some light rays is larger than the critical angle and the rays travel to the medium until meeting a proper small incident angle. The reflectance drops to 68% of the original value with just a polymer coating on the diffuse reflector. The formation of an air tunnel structure between the polymer layer and the diffuse reflector makes a symmetrical reflective index matching state and recovers 95% of the original reflectance. Due to the simple fabrication process and the chemical stability, the structure can be applied to various optical components and reflective display devices.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Hanrahan and W. Krueger, SIGGRAPH ’93 Proc. 27, 165 (1993).
  2. M. Gratzel, Nature 409, 575 (2001).
    [CrossRef]
  3. J. E. Jang, S. N. Cha, J. M. Lee, J. J. Kim, G. A. J. Amaratunga, and J. E. Jung, Opt. Lett. 37, 235 (2012).
    [CrossRef]
  4. D. Madzharov, R. Dewab, and D. Kinpp, Opt. Express 19, A95 (2011).
    [CrossRef]
  5. B. G. Lee, P. Stradins, D. L. Young, K. Alberi, T. Chuang, J. G. Couillard, and H. M. Branz, Appl. Phys. Lett. 99, 064101 (2011).
    [CrossRef]
  6. G. H. Lee, K. Y. Hwang, J. E. Jang, Y. W. Jin, S. Y. Lee, and J. E. Jung, Opt. Lett. 36, 754 (2011).
    [CrossRef]
  7. A. Y. G. Fuh, M. S. Tsai, L. J. Huang, and T. C. Liu, Appl. Phys. Lett. 74, 2572 (1999).
    [CrossRef]

2012 (1)

2011 (3)

D. Madzharov, R. Dewab, and D. Kinpp, Opt. Express 19, A95 (2011).
[CrossRef]

B. G. Lee, P. Stradins, D. L. Young, K. Alberi, T. Chuang, J. G. Couillard, and H. M. Branz, Appl. Phys. Lett. 99, 064101 (2011).
[CrossRef]

G. H. Lee, K. Y. Hwang, J. E. Jang, Y. W. Jin, S. Y. Lee, and J. E. Jung, Opt. Lett. 36, 754 (2011).
[CrossRef]

2001 (1)

M. Gratzel, Nature 409, 575 (2001).
[CrossRef]

1999 (1)

A. Y. G. Fuh, M. S. Tsai, L. J. Huang, and T. C. Liu, Appl. Phys. Lett. 74, 2572 (1999).
[CrossRef]

1993 (1)

P. Hanrahan and W. Krueger, SIGGRAPH ’93 Proc. 27, 165 (1993).

Alberi, K.

B. G. Lee, P. Stradins, D. L. Young, K. Alberi, T. Chuang, J. G. Couillard, and H. M. Branz, Appl. Phys. Lett. 99, 064101 (2011).
[CrossRef]

Amaratunga, G. A. J.

Branz, H. M.

B. G. Lee, P. Stradins, D. L. Young, K. Alberi, T. Chuang, J. G. Couillard, and H. M. Branz, Appl. Phys. Lett. 99, 064101 (2011).
[CrossRef]

Cha, S. N.

Chuang, T.

B. G. Lee, P. Stradins, D. L. Young, K. Alberi, T. Chuang, J. G. Couillard, and H. M. Branz, Appl. Phys. Lett. 99, 064101 (2011).
[CrossRef]

Couillard, J. G.

B. G. Lee, P. Stradins, D. L. Young, K. Alberi, T. Chuang, J. G. Couillard, and H. M. Branz, Appl. Phys. Lett. 99, 064101 (2011).
[CrossRef]

Dewab, R.

Fuh, A. Y. G.

A. Y. G. Fuh, M. S. Tsai, L. J. Huang, and T. C. Liu, Appl. Phys. Lett. 74, 2572 (1999).
[CrossRef]

Gratzel, M.

M. Gratzel, Nature 409, 575 (2001).
[CrossRef]

Hanrahan, P.

P. Hanrahan and W. Krueger, SIGGRAPH ’93 Proc. 27, 165 (1993).

Huang, L. J.

A. Y. G. Fuh, M. S. Tsai, L. J. Huang, and T. C. Liu, Appl. Phys. Lett. 74, 2572 (1999).
[CrossRef]

Hwang, K. Y.

Jang, J. E.

Jin, Y. W.

Jung, J. E.

Kim, J. J.

Kinpp, D.

Krueger, W.

P. Hanrahan and W. Krueger, SIGGRAPH ’93 Proc. 27, 165 (1993).

Lee, B. G.

B. G. Lee, P. Stradins, D. L. Young, K. Alberi, T. Chuang, J. G. Couillard, and H. M. Branz, Appl. Phys. Lett. 99, 064101 (2011).
[CrossRef]

Lee, G. H.

Lee, J. M.

Lee, S. Y.

Liu, T. C.

A. Y. G. Fuh, M. S. Tsai, L. J. Huang, and T. C. Liu, Appl. Phys. Lett. 74, 2572 (1999).
[CrossRef]

Madzharov, D.

Stradins, P.

B. G. Lee, P. Stradins, D. L. Young, K. Alberi, T. Chuang, J. G. Couillard, and H. M. Branz, Appl. Phys. Lett. 99, 064101 (2011).
[CrossRef]

Tsai, M. S.

A. Y. G. Fuh, M. S. Tsai, L. J. Huang, and T. C. Liu, Appl. Phys. Lett. 74, 2572 (1999).
[CrossRef]

Young, D. L.

B. G. Lee, P. Stradins, D. L. Young, K. Alberi, T. Chuang, J. G. Couillard, and H. M. Branz, Appl. Phys. Lett. 99, 064101 (2011).
[CrossRef]

Appl. Phys. Lett. (2)

B. G. Lee, P. Stradins, D. L. Young, K. Alberi, T. Chuang, J. G. Couillard, and H. M. Branz, Appl. Phys. Lett. 99, 064101 (2011).
[CrossRef]

A. Y. G. Fuh, M. S. Tsai, L. J. Huang, and T. C. Liu, Appl. Phys. Lett. 74, 2572 (1999).
[CrossRef]

Nature (1)

M. Gratzel, Nature 409, 575 (2001).
[CrossRef]

Opt. Express (1)

Opt. Lett. (2)

SIGGRAPH ’93 Proc. (1)

P. Hanrahan and W. Krueger, SIGGRAPH ’93 Proc. 27, 165 (1993).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Simulation results of light ray pathway and the reflectance of various diffused reflector structures (a) light pathway simulation for polymer (n=1.5, 1.7) coated on Al embossing structure (left) and the reflectance of various diffuse reflectors with polymer coating: dash curves are the original reflectance of reflectors and (b) light pathway simulation for air gap situation (left) and the reflectance of glass covered state on reflectors with air gap. Because of the overlap between light source and detector, there is some dead area for detection from 8° to 8° (light green area in figure).

Fig. 2.
Fig. 2.

Schematic diagram of fabrication process for air tunnel structure and the optical/SEM images: (a) brown color and white color correspond to PR and air, respectively; (b) 2D, 3D optical images after fabrication; and (c) SEM image of air tunnel structure (scale bar: 30 μm left, 1 μm right).

Fig. 3.
Fig. 3.

Reflector image and the optical characteristics. (a) Photo image of Al embossing diffuse reflector with air tunnel structure; air gap is formed at the white area in the blue box and (b) SCI mode reflectance for various sample states. (c) SCE mode reflectance for various samples’ states.

Fig. 4.
Fig. 4.

DRPDLC device images. PDLC layer was formed between top glass substrate and bottom diffuse reflector. (a) Reflective device using Al embossing diffuse reflector and (b) PDLC structure using new air tunnel structure on Al embossing diffuse reflector.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

n1sinθ1=n2sinθ2=n3sinθ3==n1sinθnθn=sin1[nn1n1·nn2nn1··n1n2sinθ1]θn=θ1,

Metrics