Abstract

We demonstrate a laser ranging scheme that uses a high-frequency modulated beam to achieve subnanometer precision by the combined use of interferometric and time-of-flight measurements. We first describe how the absolute distance is extracted from a two-mode interference signal. In particular, we show that the signal, which presents both optical and synthetic wavelength scales, allows one to achieve nanometer-scale accuracy, despite the significant long-term phase drifts in the 20 GHz detection chains. We present results obtained with the telemeter implemented for a distance of about four meters, obtained by folding the laser beam path to the target.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Salvadé, N. Schuhler, S. Lévêque, and S. Le Floch, Appl. Opt. 47, 2715 (2008).
    [CrossRef]
  2. O. P. Lay, S. Dubovitsky, R. D. Peters, J. P. Burger, S.-W. Ahn, W. H. Steier, H. R. Fetterman, and Y. Chang, Opt. Lett. 28, 890 (2003).
    [CrossRef]
  3. I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, Nat. Photonics 3, 351 (2009).
    [CrossRef]
  4. S. A. van den Berg, S. T. Persijn, G. J. P. Kok, M. G. Zeitouny, and N. Bhattacharya, Phys. Rev. Lett. 108, 183901 (2012).
    [CrossRef]
  5. J. Fatome, S. Pitois, C. Fortier, B. Kibler, C. Finot, G. Millot, C. Courde, M. Lintz, and E. Samain, Opt. Commun. 283, 2425 (2010).
    [CrossRef]
  6. D. H. Phung, M. Lintz, and C. Alexandre, “Dynamics of the amplitude-to-phase coupling in 1.5 μm high bandwidth photodiodes,” IEEE Trans. Microwave Theor. Tech., submitted for publication.
  7. J. E. Volder, IRE Trans. Electron. Comput. 8, 330 (1959).
    [CrossRef]

2012 (1)

S. A. van den Berg, S. T. Persijn, G. J. P. Kok, M. G. Zeitouny, and N. Bhattacharya, Phys. Rev. Lett. 108, 183901 (2012).
[CrossRef]

2010 (1)

J. Fatome, S. Pitois, C. Fortier, B. Kibler, C. Finot, G. Millot, C. Courde, M. Lintz, and E. Samain, Opt. Commun. 283, 2425 (2010).
[CrossRef]

2009 (1)

I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, Nat. Photonics 3, 351 (2009).
[CrossRef]

2008 (1)

2003 (1)

1959 (1)

J. E. Volder, IRE Trans. Electron. Comput. 8, 330 (1959).
[CrossRef]

Ahn, S.-W.

Alexandre, C.

D. H. Phung, M. Lintz, and C. Alexandre, “Dynamics of the amplitude-to-phase coupling in 1.5 μm high bandwidth photodiodes,” IEEE Trans. Microwave Theor. Tech., submitted for publication.

Bhattacharya, N.

S. A. van den Berg, S. T. Persijn, G. J. P. Kok, M. G. Zeitouny, and N. Bhattacharya, Phys. Rev. Lett. 108, 183901 (2012).
[CrossRef]

Burger, J. P.

Chang, Y.

Coddington, I.

I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, Nat. Photonics 3, 351 (2009).
[CrossRef]

Courde, C.

J. Fatome, S. Pitois, C. Fortier, B. Kibler, C. Finot, G. Millot, C. Courde, M. Lintz, and E. Samain, Opt. Commun. 283, 2425 (2010).
[CrossRef]

Dubovitsky, S.

Fatome, J.

J. Fatome, S. Pitois, C. Fortier, B. Kibler, C. Finot, G. Millot, C. Courde, M. Lintz, and E. Samain, Opt. Commun. 283, 2425 (2010).
[CrossRef]

Fetterman, H. R.

Finot, C.

J. Fatome, S. Pitois, C. Fortier, B. Kibler, C. Finot, G. Millot, C. Courde, M. Lintz, and E. Samain, Opt. Commun. 283, 2425 (2010).
[CrossRef]

Fortier, C.

J. Fatome, S. Pitois, C. Fortier, B. Kibler, C. Finot, G. Millot, C. Courde, M. Lintz, and E. Samain, Opt. Commun. 283, 2425 (2010).
[CrossRef]

Kibler, B.

J. Fatome, S. Pitois, C. Fortier, B. Kibler, C. Finot, G. Millot, C. Courde, M. Lintz, and E. Samain, Opt. Commun. 283, 2425 (2010).
[CrossRef]

Kok, G. J. P.

S. A. van den Berg, S. T. Persijn, G. J. P. Kok, M. G. Zeitouny, and N. Bhattacharya, Phys. Rev. Lett. 108, 183901 (2012).
[CrossRef]

Lay, O. P.

Le Floch, S.

Lévêque, S.

Lintz, M.

J. Fatome, S. Pitois, C. Fortier, B. Kibler, C. Finot, G. Millot, C. Courde, M. Lintz, and E. Samain, Opt. Commun. 283, 2425 (2010).
[CrossRef]

D. H. Phung, M. Lintz, and C. Alexandre, “Dynamics of the amplitude-to-phase coupling in 1.5 μm high bandwidth photodiodes,” IEEE Trans. Microwave Theor. Tech., submitted for publication.

Millot, G.

J. Fatome, S. Pitois, C. Fortier, B. Kibler, C. Finot, G. Millot, C. Courde, M. Lintz, and E. Samain, Opt. Commun. 283, 2425 (2010).
[CrossRef]

Nenadovic, L.

I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, Nat. Photonics 3, 351 (2009).
[CrossRef]

Newbury, N. R.

I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, Nat. Photonics 3, 351 (2009).
[CrossRef]

Persijn, S. T.

S. A. van den Berg, S. T. Persijn, G. J. P. Kok, M. G. Zeitouny, and N. Bhattacharya, Phys. Rev. Lett. 108, 183901 (2012).
[CrossRef]

Peters, R. D.

Phung, D. H.

D. H. Phung, M. Lintz, and C. Alexandre, “Dynamics of the amplitude-to-phase coupling in 1.5 μm high bandwidth photodiodes,” IEEE Trans. Microwave Theor. Tech., submitted for publication.

Pitois, S.

J. Fatome, S. Pitois, C. Fortier, B. Kibler, C. Finot, G. Millot, C. Courde, M. Lintz, and E. Samain, Opt. Commun. 283, 2425 (2010).
[CrossRef]

Salvadé, Y.

Samain, E.

J. Fatome, S. Pitois, C. Fortier, B. Kibler, C. Finot, G. Millot, C. Courde, M. Lintz, and E. Samain, Opt. Commun. 283, 2425 (2010).
[CrossRef]

Schuhler, N.

Steier, W. H.

Swann, W. C.

I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, Nat. Photonics 3, 351 (2009).
[CrossRef]

van den Berg, S. A.

S. A. van den Berg, S. T. Persijn, G. J. P. Kok, M. G. Zeitouny, and N. Bhattacharya, Phys. Rev. Lett. 108, 183901 (2012).
[CrossRef]

Volder, J. E.

J. E. Volder, IRE Trans. Electron. Comput. 8, 330 (1959).
[CrossRef]

Zeitouny, M. G.

S. A. van den Berg, S. T. Persijn, G. J. P. Kok, M. G. Zeitouny, and N. Bhattacharya, Phys. Rev. Lett. 108, 183901 (2012).
[CrossRef]

Appl. Opt. (1)

IRE Trans. Electron. Comput. (1)

J. E. Volder, IRE Trans. Electron. Comput. 8, 330 (1959).
[CrossRef]

Nat. Photonics (1)

I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, Nat. Photonics 3, 351 (2009).
[CrossRef]

Opt. Commun. (1)

J. Fatome, S. Pitois, C. Fortier, B. Kibler, C. Finot, G. Millot, C. Courde, M. Lintz, and E. Samain, Opt. Commun. 283, 2425 (2010).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. Lett. (1)

S. A. van den Berg, S. T. Persijn, G. J. P. Kok, M. G. Zeitouny, and N. Bhattacharya, Phys. Rev. Lett. 108, 183901 (2012).
[CrossRef]

Other (1)

D. H. Phung, M. Lintz, and C. Alexandre, “Dynamics of the amplitude-to-phase coupling in 1.5 μm high bandwidth photodiodes,” IEEE Trans. Microwave Theor. Tech., submitted for publication.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Schematic diagram of the telemeter. BS0, beam splitter plate; (P)BS, (polarizing) beam splitter cube.

Fig. 2.
Fig. 2.

Signal behavior: (a) when the optical frequency varies and (b) when the target is moved continuously over Λ/2, with ε0.25.

Fig. 3.
Fig. 3.

Schematic diagram of the telemeter. Orange, laser beams; green, optical fiber; black, HF signals (20.04 GHz); Blue, RF signals (20 MHz); coll., fibered collimator; (P)BS, (polarizing) beam splitter; wedge, wedged splitter plate; Glan 45°, air Glan polarizer, oriented at 45°; AOM, acousto-optic modulator, range of fAOM is [135–185] MHz; DDS, direct digital synthesizer; M, mixers; FPGA, field programmable gate array.

Fig. 4.
Fig. 4.

Stability of the relative phase and amplitude ratio measurements with a stable optical signal without interference.

Fig. 5.
Fig. 5.

(a) Stability of the measurement with 320 elementary cycles in 43 ms and (b) signal noise, converted into length data.

Fig. 6.
Fig. 6.

Results of 5000 full cycles (a) without and (b) with correction for electronic distortion. For convenience, the length values are shifted by 7.5m.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

I(t)=(1ε2)[1+cos(δ(tL/c))]+ε2[1+cos(δ(tl/c))]+2ε1ε2cos(ω(Ll)/c+δ(Ll)/2c)×[cos(δ(t(L+l)/2c))+cos(δ(Ll)/2c)],
a=meas+ref+Int,
Int=2ε(1ε2)cos((ω+δ/2)ΔL/c)eiδ(L+l)/2c.

Metrics