Abstract

A compact temperature sensor based on a selectively liquid-filled photonic crystal fiber (PCF) is proposed using controlled hole collapse in PCF post-processing. The first ring around the core is filled with liquid of higher refractive index than the matrix, while the outer rings of holes are filled with air. The bandgap (BG)-like effect of the high refractive index ring is analyzed. Absorption loss spectra of the fiber are found to be quite sensitive to the refractive index of liquid when the liquid is lossy. Using the BG-like effect, a fiber temperature sensor is fabricated by selectively injecting a mixture of dimethyl sulfoxide and aqueous gold colloids with a high thermo-optic coefficient to the PCF. Temperature sensitivity up to 5.5nm/°C is experimentally confirmed.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Russell, Science 299, 358 (2003).
    [CrossRef]
  2. J. C. Knight, Nature 424, 847 (2003).
    [CrossRef]
  3. F. Luan, A. K. George, T. D. Hedley, G. J. Pearce, and D. M. Bird, Opt. Lett. 29, 2369 (2004).
    [CrossRef]
  4. D. K. C. Wu, B. T. Kuhlmey, and B. J. Eggleton, Opt. Lett. 34, 322 (2009).
    [CrossRef]
  5. B. T. Kuhlmey, B. J. Eggleton, and D. K. C. Wu, J. Lightwave Technol. 27, 1617 (2009).
    [CrossRef]
  6. F. Du, Y.-Q. Lu, and S.-T. Wu, Appl. Phys. Lett. 85, 2181 (2004).
    [CrossRef]
  7. F. M. Cox, A. Argyros, M. C. Large, and S. Kalluri, Opt. Express 15, 13675 (2007).
    [CrossRef]
  8. A. Cerqueira S., F. Luan, C. M. B. Cordeiro, A. K. George, and J. C. Knight, Opt. Express 14, 926 (2006).
    [CrossRef]
  9. L. Xiao, W. Jin, and M. Demokan, Opt. Express 15, 15637 (2007).
    [CrossRef]
  10. F. Wang, W. Yuan, O. Hansen, and O. Bang, Opt. Express 19, 17585 (2011).
    [CrossRef]
  11. Y. Ould-Agha, A. Betourne, O. Vanvincq, G. Bouwmans, and Y. Quiquempois, Opt. Express 20, 6746 (2012).
    [CrossRef]
  12. Z. Chen, C. Xiong, L. M. Xiao, W. J. Wadsworth, and T. A. Birks, Opt. Lett. 34, 2240 (2009).
    [CrossRef]
  13. X. Xi, Z. Chen, G. Sun, and J. Hou, Appl. Opt. 50, E50 (2011).
    [CrossRef]
  14. M. J. Weber, Handbook of Optical Materials (CRC, 2003).
  15. Y. Zhang, Y. Peng, J. Hou, and Z. Jiang, “Effects of mass fraction and temperature of mixed solution on localized surface plasmon resonance,” High Power Laser Part. Beams (to be published).
  16. W. Yuan, L. Wei, T. T. Alkeskjold, A. Bjarklev, and O. Bang, Opt. Express 17, 19356 (2009).
    [CrossRef]
  17. S. J. Qiu, Y. Chen, F. Xu, and Y. Q. Lu, Opt. Lett. 37, 863 (2012).
    [CrossRef]
  18. S. K. Srivastava and B. D. Gupta, J. Opt. Soc. Am. A 27, 1743 (2010).
    [CrossRef]
  19. J.-l. Kou, S.-j. Qiu, F. Xu, and Y.-q. Lu, Opt. Express 19, 18452 (2011).
    [CrossRef]
  20. L. J. Sherry, S. H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and Y. Xia, Nano Lett. 5, 2034 (2005).
    [CrossRef]

2012

2011

2010

2009

2007

2006

2005

L. J. Sherry, S. H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and Y. Xia, Nano Lett. 5, 2034 (2005).
[CrossRef]

2004

2003

P. Russell, Science 299, 358 (2003).
[CrossRef]

J. C. Knight, Nature 424, 847 (2003).
[CrossRef]

Alkeskjold, T. T.

Argyros, A.

Bang, O.

Betourne, A.

Bird, D. M.

Birks, T. A.

Bjarklev, A.

Bouwmans, G.

Cerqueira S., A.

Chang, S. H.

L. J. Sherry, S. H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and Y. Xia, Nano Lett. 5, 2034 (2005).
[CrossRef]

Chen, Y.

Chen, Z.

Cordeiro, C. M. B.

Cox, F. M.

Demokan, M.

Du, F.

F. Du, Y.-Q. Lu, and S.-T. Wu, Appl. Phys. Lett. 85, 2181 (2004).
[CrossRef]

Eggleton, B. J.

George, A. K.

Gupta, B. D.

Hansen, O.

Hedley, T. D.

Hou, J.

X. Xi, Z. Chen, G. Sun, and J. Hou, Appl. Opt. 50, E50 (2011).
[CrossRef]

Y. Zhang, Y. Peng, J. Hou, and Z. Jiang, “Effects of mass fraction and temperature of mixed solution on localized surface plasmon resonance,” High Power Laser Part. Beams (to be published).

Jiang, Z.

Y. Zhang, Y. Peng, J. Hou, and Z. Jiang, “Effects of mass fraction and temperature of mixed solution on localized surface plasmon resonance,” High Power Laser Part. Beams (to be published).

Jin, W.

Kalluri, S.

Knight, J. C.

Kou, J.-l.

Kuhlmey, B. T.

Large, M. C.

Lu, Y. Q.

Lu, Y.-q.

J.-l. Kou, S.-j. Qiu, F. Xu, and Y.-q. Lu, Opt. Express 19, 18452 (2011).
[CrossRef]

F. Du, Y.-Q. Lu, and S.-T. Wu, Appl. Phys. Lett. 85, 2181 (2004).
[CrossRef]

Luan, F.

Ould-Agha, Y.

Pearce, G. J.

Peng, Y.

Y. Zhang, Y. Peng, J. Hou, and Z. Jiang, “Effects of mass fraction and temperature of mixed solution on localized surface plasmon resonance,” High Power Laser Part. Beams (to be published).

Qiu, S. J.

Qiu, S.-j.

Quiquempois, Y.

Russell, P.

P. Russell, Science 299, 358 (2003).
[CrossRef]

Schatz, G. C.

L. J. Sherry, S. H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and Y. Xia, Nano Lett. 5, 2034 (2005).
[CrossRef]

Sherry, L. J.

L. J. Sherry, S. H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and Y. Xia, Nano Lett. 5, 2034 (2005).
[CrossRef]

Srivastava, S. K.

Sun, G.

Van Duyne, R. P.

L. J. Sherry, S. H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and Y. Xia, Nano Lett. 5, 2034 (2005).
[CrossRef]

Vanvincq, O.

Wadsworth, W. J.

Wang, F.

Weber, M. J.

M. J. Weber, Handbook of Optical Materials (CRC, 2003).

Wei, L.

Wiley, B. J.

L. J. Sherry, S. H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and Y. Xia, Nano Lett. 5, 2034 (2005).
[CrossRef]

Wu, D. K. C.

Wu, S.-T.

F. Du, Y.-Q. Lu, and S.-T. Wu, Appl. Phys. Lett. 85, 2181 (2004).
[CrossRef]

Xi, X.

Xia, Y.

L. J. Sherry, S. H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and Y. Xia, Nano Lett. 5, 2034 (2005).
[CrossRef]

Xiao, L.

Xiao, L. M.

Xiong, C.

Xu, F.

Yuan, W.

Zhang, Y.

Y. Zhang, Y. Peng, J. Hou, and Z. Jiang, “Effects of mass fraction and temperature of mixed solution on localized surface plasmon resonance,” High Power Laser Part. Beams (to be published).

Appl. Opt.

Appl. Phys. Lett.

F. Du, Y.-Q. Lu, and S.-T. Wu, Appl. Phys. Lett. 85, 2181 (2004).
[CrossRef]

J. Lightwave Technol.

J. Opt. Soc. Am. A

Nano Lett.

L. J. Sherry, S. H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and Y. Xia, Nano Lett. 5, 2034 (2005).
[CrossRef]

Nature

J. C. Knight, Nature 424, 847 (2003).
[CrossRef]

Opt. Express

Opt. Lett.

Science

P. Russell, Science 299, 358 (2003).
[CrossRef]

Other

M. J. Weber, Handbook of Optical Materials (CRC, 2003).

Y. Zhang, Y. Peng, J. Hou, and Z. Jiang, “Effects of mass fraction and temperature of mixed solution on localized surface plasmon resonance,” High Power Laser Part. Beams (to be published).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) Scanning electron micrograph of an index-guiding PCF. (b) Micrograph of the PCF after controlled hole collapse. (c) Schematic of PCF liquid filling setup. (d) Cross section of selectively liquid-filled PCF.

Fig. 2.
Fig. 2.

(a) Transmission spectra of a selectively liquid-filled PCF when Δn increases from 0.013 to 0.017. (b) Loss spectra of an ASPBGF for different Δn, solid curve: 0.014; dashed curve: 0.016. (c) and (d) The intensity distribution of the BG-like mode in selectively liquid-filled PCF at 500 and 560 nm when Δn=0.016.

Fig. 3.
Fig. 3.

(a) Transmission spectrum of a mixture of aqueous gold colloids and DMSO with mass-mixing ratio 150 (25.5°C, 1 cm length). (b) Schematic of experimental setup. (c) The measured loss spectrum of the selectively liquid-filled PCF at 20°C.

Fig. 4.
Fig. 4.

(a) Loss spectra of the selectively liquid-filled PCF when the temperature increases from 20°C to 28°C. (b) Relationship between temperature and maximum loss wavelength.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

IdI0(1ηm)exp[η(nliq,λ)NCextd]exp(αcd),

Metrics