Abstract

Surface plasmon polaritons on thin metal films are a well studied phenomena when excited using prism coupled geometries such as the Kretschmann attenuated total reflection configuration. Here we describe a novel interference pattern in the conically scattered light emanating from such a configuration when illuminated by a focused beam. We observe conditions indicating only self-interference of scattered surface plasmon polaritions without any contributions from specular reflection. The spatial evolution of this field is described in the context of Fourier optics and has applications in highly sensitive surface plasmon based biosensing.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Kretschmann and H. Raether, Z. Naturforsch. 230, 2135 (1968).
  2. H. Raether, Springer Tracts Mod. Phys. 38, 85 (1965).
  3. R. Schumann and S. Gregory, “Near-field modulation of interference components in surface plasmon resonance,” arXiv preprint arXiv:0804.3418 (2008).
  4. R. Andaloro, R. Deck, and H. Simon, J. Opt. Soc. Am. B 22, 1512 (2005).
    [CrossRef]
  5. R. Schumann, “Surface plasmon random scattering and related phenomena,” Ph.D. thesis (University of Oregon, 2009).
  6. H. Simon, R. Andaloro, and R. Deck, Opt. Lett. 32, 1590 (2007).
    [CrossRef]
  7. S. Chuang, J. Opt. Soc. Am. A 3, 593 (1986).
    [CrossRef]
  8. F. Baida, D. Labeke, and J. Vigoureux, Opt. Commun. 171, 317 (1999).
    [CrossRef]
  9. H. Simon and J. Guha, Opt. Commun. 18, 391 (1976).
    [CrossRef]
  10. M. Piliarik and J. Homola, Opt. Express 17, 16505(2009).
    [CrossRef]

2009 (1)

2007 (1)

2005 (1)

1999 (1)

F. Baida, D. Labeke, and J. Vigoureux, Opt. Commun. 171, 317 (1999).
[CrossRef]

1986 (1)

1976 (1)

H. Simon and J. Guha, Opt. Commun. 18, 391 (1976).
[CrossRef]

1968 (1)

E. Kretschmann and H. Raether, Z. Naturforsch. 230, 2135 (1968).

1965 (1)

H. Raether, Springer Tracts Mod. Phys. 38, 85 (1965).

Andaloro, R.

Baida, F.

F. Baida, D. Labeke, and J. Vigoureux, Opt. Commun. 171, 317 (1999).
[CrossRef]

Chuang, S.

Deck, R.

Gregory, S.

R. Schumann and S. Gregory, “Near-field modulation of interference components in surface plasmon resonance,” arXiv preprint arXiv:0804.3418 (2008).

Guha, J.

H. Simon and J. Guha, Opt. Commun. 18, 391 (1976).
[CrossRef]

Homola, J.

Kretschmann, E.

E. Kretschmann and H. Raether, Z. Naturforsch. 230, 2135 (1968).

Labeke, D.

F. Baida, D. Labeke, and J. Vigoureux, Opt. Commun. 171, 317 (1999).
[CrossRef]

Piliarik, M.

Raether, H.

E. Kretschmann and H. Raether, Z. Naturforsch. 230, 2135 (1968).

H. Raether, Springer Tracts Mod. Phys. 38, 85 (1965).

Schumann, R.

R. Schumann and S. Gregory, “Near-field modulation of interference components in surface plasmon resonance,” arXiv preprint arXiv:0804.3418 (2008).

R. Schumann, “Surface plasmon random scattering and related phenomena,” Ph.D. thesis (University of Oregon, 2009).

Simon, H.

Vigoureux, J.

F. Baida, D. Labeke, and J. Vigoureux, Opt. Commun. 171, 317 (1999).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

Opt. Commun. (2)

F. Baida, D. Labeke, and J. Vigoureux, Opt. Commun. 171, 317 (1999).
[CrossRef]

H. Simon and J. Guha, Opt. Commun. 18, 391 (1976).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Springer Tracts Mod. Phys. (1)

H. Raether, Springer Tracts Mod. Phys. 38, 85 (1965).

Z. Naturforsch. (1)

E. Kretschmann and H. Raether, Z. Naturforsch. 230, 2135 (1968).

Other (2)

R. Schumann and S. Gregory, “Near-field modulation of interference components in surface plasmon resonance,” arXiv preprint arXiv:0804.3418 (2008).

R. Schumann, “Surface plasmon random scattering and related phenomena,” Ph.D. thesis (University of Oregon, 2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1.
Fig. 1.

Experimental setup. Light is incident from the left and focused by a lens f1 on to the hypotenuse of a hemispherical prism coated with a thin layer of metal (Ag). The majority of light is directed into the specular direction. Surface roughness scatters SPPs on the ϵ2-ϵ3 interface, causing reradiation of the plasmon field into a hollow cone. f2 acts to image light exiting the system at different focal planes.

Fig. 2.
Fig. 2.

Theoretical and experimental values of |Espec(x,z)|2 and |Econe(x,z)|2 obtained for z=10μm, z=1.0mm, and z=100mm. Theoretical values are solid curves, while experimental values are shown with circles. Each plot has been normalized independently for comparison. The normalized two dimensional output from the image sensor is inset in each plot.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

E˜spec(kx)=g˜(kx)r˜123(kx).
Espec(x,z)=E˜spec(kx)eikzzeikxxdkx,
E˜cone(kx)=g˜(kx)t˜123(kx)t˜321(kx),
Econe(x,z)=E˜cone(kx)eikzzeikxxdkx.
χ(ω)=i+(χ(ω)),
χ(ω)=+(χ(ω)),
χ(ω)=+(χ(ω)),
F+χ(ω)=F+(χ(ω)+iχ(ω)),
=F+(χ(ω))+sgn(ω)F+(χ(ω)).
F+(+(χ(ω)))=(isgn(ω))F+(χ(ω)).

Metrics