Abstract

We introduce a one-dimensional model of a cavity with the Kerr nonlinearity and saturated gain designed so as to hold solitons in the state of shuttle motion. The solitons are always unstable in the cavity bounded by the usual potential barriers, due to accumulation of noise generated by the linear gain. Complete stabilization of the shuttling soliton is achieved if the linear barrier potentials are replaced by nonlinear ones, which trap the soliton, being transparent to the radiation. The removal of the noise from the cavity is additionally facilitated by an external ramp potential. The stable dynamical regimes are found numerically, and their basic properties are explained analytically.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (4)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription