Abstract

We propose and realize a new open-loop fiber-optic gyroscope (FOG) with an all-digital signal-processing (DSP) system where an all-digital phase-locked loop is employed for digital demodulation to eliminate the variation of the source intensity and suppress the bias drift. A Sagnac phase-shift tracking method is proposed to enlarge the dynamic range, and, with its aid, a new open-loop FOG, which can achieve a large dynamic range and high sensitivity at the same time, is realized. The experimental results show that compared with the conventional open-loop FOG with the same fiber coil and optical devices, the proposed FOG reduces the bias instability from 0.259 to 0.018deg/h, and the angle random walk from 0.031 to 0.006deg/h1/2, moreover, enlarges the dynamic range to ±360deg/s, exceeding the maximum dynamic range ±63deg/s of the conventional open-loop FOG.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. Vali and R. W. Shorthill, Appl. Opt. 15, 1099 (1976).
    [CrossRef]
  2. K. Bohm, P. Marten, E. Weidel, and K. Petermann, Electron. Lett. 19, 997 (1983).
    [CrossRef]
  3. Y. Gronau and M. Tur, Appl. Opt. 34, 5849 (1995).
    [CrossRef]
  4. X. Wang, C. He, and Z. Wang, Opt. Lett. 36, 1191 (2011).
    [CrossRef]
  5. O. Celikel and S. E. San, IEEE Sens. J. 9, 176 (2009).
    [CrossRef]
  6. J. Nayak, Appl. Opt. 50, E152 (2011).
    [CrossRef]
  7. C. Shen and X. Chen, Appl. Opt. 51, 2541 (2012).
    [CrossRef]
  8. S. Emge, T. Monte, J. Brunner, J. Rossi, R. Miller, and K. Ganesan, Optical Fiber Sensors, Technical Digest CD (CD) (Optical Society of America, 2006), paper MC3.
  9. L. R. Jaroszewicz, Z. Krajewski, H. Kowalski, G. Mazur, P. Zinowko, and J. Kowalski, Acta Geophys. 59, 578 (2011).
    [CrossRef]
  10. R. Bergh, H. Lefevre, and H. Shaw, J. Lightwave Technol. 2, 91 (1984).
    [CrossRef]
  11. D. Banerjee, PLL Performance, Simulation and Design (Dog Ear, 2006).
  12. F. L. Walls and D. W. Allan, Proc. IEEE 74, 162 (1986).
    [CrossRef]

2012 (1)

2011 (3)

L. R. Jaroszewicz, Z. Krajewski, H. Kowalski, G. Mazur, P. Zinowko, and J. Kowalski, Acta Geophys. 59, 578 (2011).
[CrossRef]

J. Nayak, Appl. Opt. 50, E152 (2011).
[CrossRef]

X. Wang, C. He, and Z. Wang, Opt. Lett. 36, 1191 (2011).
[CrossRef]

2009 (1)

O. Celikel and S. E. San, IEEE Sens. J. 9, 176 (2009).
[CrossRef]

1995 (1)

1986 (1)

F. L. Walls and D. W. Allan, Proc. IEEE 74, 162 (1986).
[CrossRef]

1984 (1)

R. Bergh, H. Lefevre, and H. Shaw, J. Lightwave Technol. 2, 91 (1984).
[CrossRef]

1983 (1)

K. Bohm, P. Marten, E. Weidel, and K. Petermann, Electron. Lett. 19, 997 (1983).
[CrossRef]

1976 (1)

Allan, D. W.

F. L. Walls and D. W. Allan, Proc. IEEE 74, 162 (1986).
[CrossRef]

Banerjee, D.

D. Banerjee, PLL Performance, Simulation and Design (Dog Ear, 2006).

Bergh, R.

R. Bergh, H. Lefevre, and H. Shaw, J. Lightwave Technol. 2, 91 (1984).
[CrossRef]

Bohm, K.

K. Bohm, P. Marten, E. Weidel, and K. Petermann, Electron. Lett. 19, 997 (1983).
[CrossRef]

Brunner, J.

S. Emge, T. Monte, J. Brunner, J. Rossi, R. Miller, and K. Ganesan, Optical Fiber Sensors, Technical Digest CD (CD) (Optical Society of America, 2006), paper MC3.

Celikel, O.

O. Celikel and S. E. San, IEEE Sens. J. 9, 176 (2009).
[CrossRef]

Chen, X.

Emge, S.

S. Emge, T. Monte, J. Brunner, J. Rossi, R. Miller, and K. Ganesan, Optical Fiber Sensors, Technical Digest CD (CD) (Optical Society of America, 2006), paper MC3.

Ganesan, K.

S. Emge, T. Monte, J. Brunner, J. Rossi, R. Miller, and K. Ganesan, Optical Fiber Sensors, Technical Digest CD (CD) (Optical Society of America, 2006), paper MC3.

Gronau, Y.

He, C.

Jaroszewicz, L. R.

L. R. Jaroszewicz, Z. Krajewski, H. Kowalski, G. Mazur, P. Zinowko, and J. Kowalski, Acta Geophys. 59, 578 (2011).
[CrossRef]

Kowalski, H.

L. R. Jaroszewicz, Z. Krajewski, H. Kowalski, G. Mazur, P. Zinowko, and J. Kowalski, Acta Geophys. 59, 578 (2011).
[CrossRef]

Kowalski, J.

L. R. Jaroszewicz, Z. Krajewski, H. Kowalski, G. Mazur, P. Zinowko, and J. Kowalski, Acta Geophys. 59, 578 (2011).
[CrossRef]

Krajewski, Z.

L. R. Jaroszewicz, Z. Krajewski, H. Kowalski, G. Mazur, P. Zinowko, and J. Kowalski, Acta Geophys. 59, 578 (2011).
[CrossRef]

Lefevre, H.

R. Bergh, H. Lefevre, and H. Shaw, J. Lightwave Technol. 2, 91 (1984).
[CrossRef]

Marten, P.

K. Bohm, P. Marten, E. Weidel, and K. Petermann, Electron. Lett. 19, 997 (1983).
[CrossRef]

Mazur, G.

L. R. Jaroszewicz, Z. Krajewski, H. Kowalski, G. Mazur, P. Zinowko, and J. Kowalski, Acta Geophys. 59, 578 (2011).
[CrossRef]

Miller, R.

S. Emge, T. Monte, J. Brunner, J. Rossi, R. Miller, and K. Ganesan, Optical Fiber Sensors, Technical Digest CD (CD) (Optical Society of America, 2006), paper MC3.

Monte, T.

S. Emge, T. Monte, J. Brunner, J. Rossi, R. Miller, and K. Ganesan, Optical Fiber Sensors, Technical Digest CD (CD) (Optical Society of America, 2006), paper MC3.

Nayak, J.

Petermann, K.

K. Bohm, P. Marten, E. Weidel, and K. Petermann, Electron. Lett. 19, 997 (1983).
[CrossRef]

Rossi, J.

S. Emge, T. Monte, J. Brunner, J. Rossi, R. Miller, and K. Ganesan, Optical Fiber Sensors, Technical Digest CD (CD) (Optical Society of America, 2006), paper MC3.

San, S. E.

O. Celikel and S. E. San, IEEE Sens. J. 9, 176 (2009).
[CrossRef]

Shaw, H.

R. Bergh, H. Lefevre, and H. Shaw, J. Lightwave Technol. 2, 91 (1984).
[CrossRef]

Shen, C.

Shorthill, R. W.

Tur, M.

Vali, V.

Walls, F. L.

F. L. Walls and D. W. Allan, Proc. IEEE 74, 162 (1986).
[CrossRef]

Wang, X.

Wang, Z.

Weidel, E.

K. Bohm, P. Marten, E. Weidel, and K. Petermann, Electron. Lett. 19, 997 (1983).
[CrossRef]

Zinowko, P.

L. R. Jaroszewicz, Z. Krajewski, H. Kowalski, G. Mazur, P. Zinowko, and J. Kowalski, Acta Geophys. 59, 578 (2011).
[CrossRef]

Acta Geophys. (1)

L. R. Jaroszewicz, Z. Krajewski, H. Kowalski, G. Mazur, P. Zinowko, and J. Kowalski, Acta Geophys. 59, 578 (2011).
[CrossRef]

Appl. Opt. (4)

Electron. Lett. (1)

K. Bohm, P. Marten, E. Weidel, and K. Petermann, Electron. Lett. 19, 997 (1983).
[CrossRef]

IEEE Sens. J. (1)

O. Celikel and S. E. San, IEEE Sens. J. 9, 176 (2009).
[CrossRef]

J. Lightwave Technol. (1)

R. Bergh, H. Lefevre, and H. Shaw, J. Lightwave Technol. 2, 91 (1984).
[CrossRef]

Opt. Lett. (1)

Proc. IEEE (1)

F. L. Walls and D. W. Allan, Proc. IEEE 74, 162 (1986).
[CrossRef]

Other (2)

D. Banerjee, PLL Performance, Simulation and Design (Dog Ear, 2006).

S. Emge, T. Monte, J. Brunner, J. Rossi, R. Miller, and K. Ganesan, Optical Fiber Sensors, Technical Digest CD (CD) (Optical Society of America, 2006), paper MC3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Proposed all-digital signal-processing system for open-loop FOGs. C, coupler; PD, photonic detector; LPF, low-pass filter; ADC, analog-digital convertor; SLED, superluminescent light emitting diode.

Fig. 2.
Fig. 2.

Proposed all-digital signal-processing open-loop FOG prototype and the experimental platform.

Fig. 3.
Fig. 3.

Comparison of dynamic range between three different FOGs.

Fig. 4.
Fig. 4.

Allan variance analysis of the proposed FOG (red curve) and the conventional open-loop FOG (blue curve).

Tables (1)

Tables Icon

Table 1. Key Parameters of Three Different FOGs

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

ID(t)=I0{1+cos[ϕs+ϕ0cos(2πfmt)]},
H1(t)=2I0J1(ϕ0)sin(ϕs)sin(2πfmt),
H2(t)=2I0J2(ϕ0)cos(ϕs)cos(4πfmt),
S1=2I0J1(ϕ0)sin(ϕs).
Ωμ=λ¯c4πRL×106,
Ωπ/2=λ¯c8RL.
S1(k)=2I0J1(ϕ0)sin[ϕs(k)]S2(k)=2I0J2(ϕ0)cos[ϕs(k)],
ϕ^s(k)=arctan(J2(ϕ0)S1(k)J1(ϕ0)S2(k))+B(k),

Metrics