Abstract

Optical extinction and absorption enhancement in the infrared range of a monolayer graphene sheet by patterning split ring resonators (SRRs) is studied. It is found that the electric mode is stronger in enhancing infrared extinction and absorption compared to the magnetic mode and other higher-order modes. We improve the infrared extinction of the SRR graphene sheet by increasing the graphene area ratio in the SRR unit cell design. With the increase of the graphene area ratio, the radiation ability of the electric dipolar mode and dissipation of graphene compete for a maximum infrared absorption of about 50%. The findings on enhancing infrared extinction and absorption of the graphene sheet by harvesting the electric dipolar mode may have potential applications in terahertz and infrared detection and modulation for graphene photonics and optoelectronics.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription