Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Suspended ultra-small disk resonator on silicon for optical sensing

Not Accessible

Your library or personal account may give you access

Abstract

An ultra-small disk resonator consisting of a suspended silicon disk with a submicron bending radius sitting on an SiO2 pedestal is demonstrated experimentally. An asymmetrical suspended rib waveguide is integrated as the access waveguide for the suspended submicron disk resonator, which is used to realize an ultra-small optical sensor with an improved sensitivity due to the enhanced evanescent field interaction with the analyte. The present optical sensor also has a large measurement range because of the ultra-large free-spectral range of the submicron-disk resonator. As an example, a suspended submicron disk sensor with a bending radius of 0.8 μm is designed, fabricated, and characterized. The concentration of NaCl aqueous solution and organic liquids is measured with the suspended submicron-disk sensor, and the measured sensitivity is about 130nm/RIU, which agrees well with the simulation value.

© 2013 Optical Society of America

Full Article  |  PDF Article
More Like This
Silicon photonic micro-disk resonators for label-free biosensing

Samantha M. Grist, Shon A. Schmidt, Jonas Flueckiger, Valentina Donzella, Wei Shi, Sahba Talebi Fard, James T. Kirk, Daniel M. Ratner, Karen C. Cheung, and Lukas Chrostowski
Opt. Express 21(7) 7994-8006 (2013)

Fabrication and characterization of suspended SiO2 ridge optical waveguides and the devices

Pengxin Chen, Yunpeng Zhu, Yaocheng Shi, Daoxin Dai, and Sailing He
Opt. Express 20(20) 22531-22536 (2012)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (2)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved