Abstract

A compact scheme for photonic generation of a phase-coded microwave signal using a dual-drive Mach–Zehnder modulator (DMZM) is proposed and experimentally demonstrated. In the proposed scheme, the radio frequency (RF) carrier and the coding signal are sent to the two RF ports of the DMZM, respectively. By properly setting the amplitude of the coding signal and the bias voltage of the DMZM, an exact π-phase-shift phase-coded microwave signal is generated. The proposed scheme has a simple structure since only a single DMZM is required. In addition, good frequency tunability is achieved because no frequency-dependent electrical devices or wavelength-dependent optical devices are applied. The feasibility of the proposed scheme is verified by experiment. 2 or 2.5Gb/s phase-coded 10 and 20 GHz microwave signals are successfully generated.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. I. Skolnic, Introduction to Radar (McGraw-Hill, 1962).
  2. J. Chou, Y. Han, and B. Jalali, IEEE Photon. Technol. Lett. 15, 581 (2003).
    [CrossRef]
  3. Y. T. Dai and J. P. Yao, Opt. Lett. 32, 3486 (2007).
    [CrossRef]
  4. H. Chi and J. P. Yao, IEEE Photon. Technol. Lett. 19, 768 (2007).
    [CrossRef]
  5. Z. Li, W. Z. Li, H. Chi, X. M. Zhang, and J. P. Yao, IEEE Photon. Technol. Lett. 23, 712 (2011).
    [CrossRef]
  6. H. Y. Jiang, L. S. Yan, J. Ye, W. Pan, B. Luo, and X. Zou, Opt. Lett. 38, 1361 (2013).
    [CrossRef]
  7. H. Chi and J. Yao, IEEE Microw. Wirel. Compon. Lett. 18, 371 (2008).
    [CrossRef]
  8. Z. Li, M. Li, H. Chi, X. M. Zhang, and J. P. Yao, IEEE Microw. Wirel. Compon. Lett. 21, 694 (2011).
    [CrossRef]
  9. P. Ghelfi, F. Scotti, F. Laghezza, and A. Bogoni, J. Lightwave Technol. 30, 1638 (2012).
    [CrossRef]
  10. P. Ghelfi, F. Scotti, F. Laghezza, and A. Bogoni, IEEE J. Quantum Electron. 48, 1151 (2012).
    [CrossRef]
  11. Y. M. Zhang and S. L. Pan, Opt. Lett. 38, 766 (2013).
    [CrossRef]
  12. W. Li, L. X. Wang, M. Li, and N. H. Zhu, Opt. Lett. 38, 3441 (2013).
    [CrossRef]
  13. W. Li, L. X. Wang, M. Li, and N. H. Zhu, IEEE Photon. Technol. Lett. 25, 1867 (2013).
    [CrossRef]
  14. W. Li, L. X. Wang, M. Li, H. Wang, and N. H. Zhu, IEEE Photon. J. 25, 1867 (2013).
    [CrossRef]

2013 (5)

2012 (2)

P. Ghelfi, F. Scotti, F. Laghezza, and A. Bogoni, J. Lightwave Technol. 30, 1638 (2012).
[CrossRef]

P. Ghelfi, F. Scotti, F. Laghezza, and A. Bogoni, IEEE J. Quantum Electron. 48, 1151 (2012).
[CrossRef]

2011 (2)

Z. Li, W. Z. Li, H. Chi, X. M. Zhang, and J. P. Yao, IEEE Photon. Technol. Lett. 23, 712 (2011).
[CrossRef]

Z. Li, M. Li, H. Chi, X. M. Zhang, and J. P. Yao, IEEE Microw. Wirel. Compon. Lett. 21, 694 (2011).
[CrossRef]

2008 (1)

H. Chi and J. Yao, IEEE Microw. Wirel. Compon. Lett. 18, 371 (2008).
[CrossRef]

2007 (2)

Y. T. Dai and J. P. Yao, Opt. Lett. 32, 3486 (2007).
[CrossRef]

H. Chi and J. P. Yao, IEEE Photon. Technol. Lett. 19, 768 (2007).
[CrossRef]

2003 (1)

J. Chou, Y. Han, and B. Jalali, IEEE Photon. Technol. Lett. 15, 581 (2003).
[CrossRef]

Bogoni, A.

P. Ghelfi, F. Scotti, F. Laghezza, and A. Bogoni, J. Lightwave Technol. 30, 1638 (2012).
[CrossRef]

P. Ghelfi, F. Scotti, F. Laghezza, and A. Bogoni, IEEE J. Quantum Electron. 48, 1151 (2012).
[CrossRef]

Chi, H.

Z. Li, M. Li, H. Chi, X. M. Zhang, and J. P. Yao, IEEE Microw. Wirel. Compon. Lett. 21, 694 (2011).
[CrossRef]

Z. Li, W. Z. Li, H. Chi, X. M. Zhang, and J. P. Yao, IEEE Photon. Technol. Lett. 23, 712 (2011).
[CrossRef]

H. Chi and J. Yao, IEEE Microw. Wirel. Compon. Lett. 18, 371 (2008).
[CrossRef]

H. Chi and J. P. Yao, IEEE Photon. Technol. Lett. 19, 768 (2007).
[CrossRef]

Chou, J.

J. Chou, Y. Han, and B. Jalali, IEEE Photon. Technol. Lett. 15, 581 (2003).
[CrossRef]

Dai, Y. T.

Ghelfi, P.

P. Ghelfi, F. Scotti, F. Laghezza, and A. Bogoni, IEEE J. Quantum Electron. 48, 1151 (2012).
[CrossRef]

P. Ghelfi, F. Scotti, F. Laghezza, and A. Bogoni, J. Lightwave Technol. 30, 1638 (2012).
[CrossRef]

Han, Y.

J. Chou, Y. Han, and B. Jalali, IEEE Photon. Technol. Lett. 15, 581 (2003).
[CrossRef]

Jalali, B.

J. Chou, Y. Han, and B. Jalali, IEEE Photon. Technol. Lett. 15, 581 (2003).
[CrossRef]

Jiang, H. Y.

Laghezza, F.

P. Ghelfi, F. Scotti, F. Laghezza, and A. Bogoni, J. Lightwave Technol. 30, 1638 (2012).
[CrossRef]

P. Ghelfi, F. Scotti, F. Laghezza, and A. Bogoni, IEEE J. Quantum Electron. 48, 1151 (2012).
[CrossRef]

Li, M.

W. Li, L. X. Wang, M. Li, and N. H. Zhu, Opt. Lett. 38, 3441 (2013).
[CrossRef]

W. Li, L. X. Wang, M. Li, and N. H. Zhu, IEEE Photon. Technol. Lett. 25, 1867 (2013).
[CrossRef]

W. Li, L. X. Wang, M. Li, H. Wang, and N. H. Zhu, IEEE Photon. J. 25, 1867 (2013).
[CrossRef]

Z. Li, M. Li, H. Chi, X. M. Zhang, and J. P. Yao, IEEE Microw. Wirel. Compon. Lett. 21, 694 (2011).
[CrossRef]

Li, W.

W. Li, L. X. Wang, M. Li, H. Wang, and N. H. Zhu, IEEE Photon. J. 25, 1867 (2013).
[CrossRef]

W. Li, L. X. Wang, M. Li, and N. H. Zhu, IEEE Photon. Technol. Lett. 25, 1867 (2013).
[CrossRef]

W. Li, L. X. Wang, M. Li, and N. H. Zhu, Opt. Lett. 38, 3441 (2013).
[CrossRef]

Li, W. Z.

Z. Li, W. Z. Li, H. Chi, X. M. Zhang, and J. P. Yao, IEEE Photon. Technol. Lett. 23, 712 (2011).
[CrossRef]

Li, Z.

Z. Li, W. Z. Li, H. Chi, X. M. Zhang, and J. P. Yao, IEEE Photon. Technol. Lett. 23, 712 (2011).
[CrossRef]

Z. Li, M. Li, H. Chi, X. M. Zhang, and J. P. Yao, IEEE Microw. Wirel. Compon. Lett. 21, 694 (2011).
[CrossRef]

Luo, B.

Pan, S. L.

Pan, W.

Scotti, F.

P. Ghelfi, F. Scotti, F. Laghezza, and A. Bogoni, J. Lightwave Technol. 30, 1638 (2012).
[CrossRef]

P. Ghelfi, F. Scotti, F. Laghezza, and A. Bogoni, IEEE J. Quantum Electron. 48, 1151 (2012).
[CrossRef]

Skolnic, M. I.

M. I. Skolnic, Introduction to Radar (McGraw-Hill, 1962).

Wang, H.

W. Li, L. X. Wang, M. Li, H. Wang, and N. H. Zhu, IEEE Photon. J. 25, 1867 (2013).
[CrossRef]

Wang, L. X.

W. Li, L. X. Wang, M. Li, H. Wang, and N. H. Zhu, IEEE Photon. J. 25, 1867 (2013).
[CrossRef]

W. Li, L. X. Wang, M. Li, and N. H. Zhu, Opt. Lett. 38, 3441 (2013).
[CrossRef]

W. Li, L. X. Wang, M. Li, and N. H. Zhu, IEEE Photon. Technol. Lett. 25, 1867 (2013).
[CrossRef]

Yan, L. S.

Yao, J.

H. Chi and J. Yao, IEEE Microw. Wirel. Compon. Lett. 18, 371 (2008).
[CrossRef]

Yao, J. P.

Z. Li, M. Li, H. Chi, X. M. Zhang, and J. P. Yao, IEEE Microw. Wirel. Compon. Lett. 21, 694 (2011).
[CrossRef]

Z. Li, W. Z. Li, H. Chi, X. M. Zhang, and J. P. Yao, IEEE Photon. Technol. Lett. 23, 712 (2011).
[CrossRef]

H. Chi and J. P. Yao, IEEE Photon. Technol. Lett. 19, 768 (2007).
[CrossRef]

Y. T. Dai and J. P. Yao, Opt. Lett. 32, 3486 (2007).
[CrossRef]

Ye, J.

Zhang, X. M.

Z. Li, W. Z. Li, H. Chi, X. M. Zhang, and J. P. Yao, IEEE Photon. Technol. Lett. 23, 712 (2011).
[CrossRef]

Z. Li, M. Li, H. Chi, X. M. Zhang, and J. P. Yao, IEEE Microw. Wirel. Compon. Lett. 21, 694 (2011).
[CrossRef]

Zhang, Y. M.

Zhu, N. H.

W. Li, L. X. Wang, M. Li, and N. H. Zhu, IEEE Photon. Technol. Lett. 25, 1867 (2013).
[CrossRef]

W. Li, L. X. Wang, M. Li, and N. H. Zhu, Opt. Lett. 38, 3441 (2013).
[CrossRef]

W. Li, L. X. Wang, M. Li, H. Wang, and N. H. Zhu, IEEE Photon. J. 25, 1867 (2013).
[CrossRef]

Zou, X.

IEEE J. Quantum Electron. (1)

P. Ghelfi, F. Scotti, F. Laghezza, and A. Bogoni, IEEE J. Quantum Electron. 48, 1151 (2012).
[CrossRef]

IEEE Microw. Wirel. Compon. Lett. (2)

H. Chi and J. Yao, IEEE Microw. Wirel. Compon. Lett. 18, 371 (2008).
[CrossRef]

Z. Li, M. Li, H. Chi, X. M. Zhang, and J. P. Yao, IEEE Microw. Wirel. Compon. Lett. 21, 694 (2011).
[CrossRef]

IEEE Photon. J. (1)

W. Li, L. X. Wang, M. Li, H. Wang, and N. H. Zhu, IEEE Photon. J. 25, 1867 (2013).
[CrossRef]

IEEE Photon. Technol. Lett. (4)

W. Li, L. X. Wang, M. Li, and N. H. Zhu, IEEE Photon. Technol. Lett. 25, 1867 (2013).
[CrossRef]

J. Chou, Y. Han, and B. Jalali, IEEE Photon. Technol. Lett. 15, 581 (2003).
[CrossRef]

H. Chi and J. P. Yao, IEEE Photon. Technol. Lett. 19, 768 (2007).
[CrossRef]

Z. Li, W. Z. Li, H. Chi, X. M. Zhang, and J. P. Yao, IEEE Photon. Technol. Lett. 23, 712 (2011).
[CrossRef]

J. Lightwave Technol. (1)

Opt. Lett. (4)

Other (1)

M. I. Skolnic, Introduction to Radar (McGraw-Hill, 1962).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Schematic diagram of the proposed photonic phase-coded microwave signal generator. TLS, tunable laser source; PC, polarization controller; DMZM, dual-drive Mach–Zehnder modulator; PD, photodetector.

Fig. 2.
Fig. 2.

Waveforms of (a) the 2Gb/s coding signal with a pattern of “1010 1100.” (b) Phase-coded 10 GHz microwave signal. (c) Extracted phase shift of the generated signal.

Fig. 3.
Fig. 3.

(a) Waveform of the 2.5Gb/s phase-coded 10 GHz microwave signal. (b) Autocorrelations of the measured (solid line) and calculated (dashed line) signals.

Fig. 4.
Fig. 4.

(a) 2Gb/s coding signal. (b) Measured phase-coded signal at 20 GHz with a pulse pattern of “0101 0101.” (c) Phase shift of the generated phase-coded signal.

Fig. 5.
Fig. 5.

(a) Waveform of the 2.5Gb/s phase-coded 20 GHz microwave signal. (b) Autocorrelations of the measured (solid line) and calculated (dashed line) signals.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

E1=ejωct[ejβcosωRFt·ejϕ0+ejγs(t)],
E1=[J0(β)ejωctejϕ0+jJ1(β)ejϕ0ej(ωcωRF)t+jJ1(β)ejϕ0ej(ωc+ωRF)t+ejωctejγs(t)],
iACJ1(β)sin(ωRFt+γs(t)ϕ0)J1(β)sin(ωRFtγs(t)+ϕ0)+J0(β)cos(γs(t)ϕ0)=2J1(β)cos(ωRFt)sin(γs(t)ϕ0)+J0(β)cos(γs(t)ϕ0).
iAC=2J1(β)cos(ωRFt)cos(γs(t))+J0(β)sin(γs(t)).
i={2J1(β)cos(ωRFt)fors(t)=12J1(β)cos(ωRFt+π)fors(t)=0.

Metrics