Abstract

We experimentally study the dynamics of the generation of multiple sidebands by means of a quasi-phase-matched four-wave mixing (FWM) process occurring in a dispersion-oscillating, highly nonlinear optical fiber. The fiber under test is pumped by a ns microchip laser operating in the normal average group-velocity dispersion regime and in the telecom C band. We reveal that the growth of higher-order sidebands is strongly influenced by the competition with cascade FWM between the pump and the first-order quasi-phase matched sidebands. The properties of these competing FWM processes are substantially affected when a partially coherent pump source is used, leading to a drastic reduction of the average power needed for sideband generation.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. J. Kippenberg, R. Holzwarth, and S. Diddams, Science 332, 555 (2011).
    [CrossRef]
  2. M. Haelterman, S. Trillo, and S. Wabnitz, Opt. Lett. 17, 745 (1992).
    [CrossRef]
  3. A. B. Matsko, A. A. Savchenkov, and L. Maleki, Opt. Lett. 37, 43 (2012).
    [CrossRef]
  4. N. J. Smith and N. J. Doran, Opt. Lett. 21, 570 (1996).
    [CrossRef]
  5. M. Droques, A. Kudlinski, G. Bouwmans, G. Martinelli, and A. Mussot, Phys. Rev. A 87, 013813 (2013).
    [CrossRef]
  6. A. Armaroli and F. Biancalana, Opt. Express 20, 25096 (2012).
    [CrossRef]
  7. F. K. Abdullaev, S. A. Darmanyan, A. Kobyakov, and F. Lederer, Phys. Lett. A 220, 213 (1996).
    [CrossRef]
  8. M. Droques, A. Kudlinski, G. Bouwmans, G. Martinelli, and A. Mussot, Opt. Lett. 37, 4832 (2012).
    [CrossRef]
  9. A. A. Sysoliatin, M. Y. Salganskii, G. Manili, D. Modotto, and S. Wabnitz, in ECOC 2012 (Optical Society of America, 2012), paper Th.2.E.2.
  10. K. Hammani, C. Finot, and G. Millot, Opt. Lett. 34, 1138 (2009).
    [CrossRef]
  11. M. Droques, A. Kudlinski, G. Bouwmans, G. Martinelli, A. Mussot, A. Armaroli, and F. Biancalana, Opt. Lett. 38, 3464 (2013).
    [CrossRef]
  12. A. Armaroli and F. Biancalana, Phys. Rev. A 87, 063848 (2013).
    [CrossRef]
  13. K. Hizanidis, B. A. Malomed, H. E. Nistazakis, and D. J. Frantzeskakis, Pure Appl. Opt. 7, L57 (1998).
    [CrossRef]

2013

M. Droques, A. Kudlinski, G. Bouwmans, G. Martinelli, and A. Mussot, Phys. Rev. A 87, 013813 (2013).
[CrossRef]

M. Droques, A. Kudlinski, G. Bouwmans, G. Martinelli, A. Mussot, A. Armaroli, and F. Biancalana, Opt. Lett. 38, 3464 (2013).
[CrossRef]

A. Armaroli and F. Biancalana, Phys. Rev. A 87, 063848 (2013).
[CrossRef]

2012

2011

T. J. Kippenberg, R. Holzwarth, and S. Diddams, Science 332, 555 (2011).
[CrossRef]

2009

1998

K. Hizanidis, B. A. Malomed, H. E. Nistazakis, and D. J. Frantzeskakis, Pure Appl. Opt. 7, L57 (1998).
[CrossRef]

1996

F. K. Abdullaev, S. A. Darmanyan, A. Kobyakov, and F. Lederer, Phys. Lett. A 220, 213 (1996).
[CrossRef]

N. J. Smith and N. J. Doran, Opt. Lett. 21, 570 (1996).
[CrossRef]

1992

Abdullaev, F. K.

F. K. Abdullaev, S. A. Darmanyan, A. Kobyakov, and F. Lederer, Phys. Lett. A 220, 213 (1996).
[CrossRef]

Armaroli, A.

Biancalana, F.

Bouwmans, G.

Darmanyan, S. A.

F. K. Abdullaev, S. A. Darmanyan, A. Kobyakov, and F. Lederer, Phys. Lett. A 220, 213 (1996).
[CrossRef]

Diddams, S.

T. J. Kippenberg, R. Holzwarth, and S. Diddams, Science 332, 555 (2011).
[CrossRef]

Doran, N. J.

Droques, M.

Finot, C.

Frantzeskakis, D. J.

K. Hizanidis, B. A. Malomed, H. E. Nistazakis, and D. J. Frantzeskakis, Pure Appl. Opt. 7, L57 (1998).
[CrossRef]

Haelterman, M.

Hammani, K.

Hizanidis, K.

K. Hizanidis, B. A. Malomed, H. E. Nistazakis, and D. J. Frantzeskakis, Pure Appl. Opt. 7, L57 (1998).
[CrossRef]

Holzwarth, R.

T. J. Kippenberg, R. Holzwarth, and S. Diddams, Science 332, 555 (2011).
[CrossRef]

Kippenberg, T. J.

T. J. Kippenberg, R. Holzwarth, and S. Diddams, Science 332, 555 (2011).
[CrossRef]

Kobyakov, A.

F. K. Abdullaev, S. A. Darmanyan, A. Kobyakov, and F. Lederer, Phys. Lett. A 220, 213 (1996).
[CrossRef]

Kudlinski, A.

Lederer, F.

F. K. Abdullaev, S. A. Darmanyan, A. Kobyakov, and F. Lederer, Phys. Lett. A 220, 213 (1996).
[CrossRef]

Maleki, L.

Malomed, B. A.

K. Hizanidis, B. A. Malomed, H. E. Nistazakis, and D. J. Frantzeskakis, Pure Appl. Opt. 7, L57 (1998).
[CrossRef]

Manili, G.

A. A. Sysoliatin, M. Y. Salganskii, G. Manili, D. Modotto, and S. Wabnitz, in ECOC 2012 (Optical Society of America, 2012), paper Th.2.E.2.

Martinelli, G.

Matsko, A. B.

Millot, G.

Modotto, D.

A. A. Sysoliatin, M. Y. Salganskii, G. Manili, D. Modotto, and S. Wabnitz, in ECOC 2012 (Optical Society of America, 2012), paper Th.2.E.2.

Mussot, A.

Nistazakis, H. E.

K. Hizanidis, B. A. Malomed, H. E. Nistazakis, and D. J. Frantzeskakis, Pure Appl. Opt. 7, L57 (1998).
[CrossRef]

Salganskii, M. Y.

A. A. Sysoliatin, M. Y. Salganskii, G. Manili, D. Modotto, and S. Wabnitz, in ECOC 2012 (Optical Society of America, 2012), paper Th.2.E.2.

Savchenkov, A. A.

Smith, N. J.

Sysoliatin, A. A.

A. A. Sysoliatin, M. Y. Salganskii, G. Manili, D. Modotto, and S. Wabnitz, in ECOC 2012 (Optical Society of America, 2012), paper Th.2.E.2.

Trillo, S.

Wabnitz, S.

M. Haelterman, S. Trillo, and S. Wabnitz, Opt. Lett. 17, 745 (1992).
[CrossRef]

A. A. Sysoliatin, M. Y. Salganskii, G. Manili, D. Modotto, and S. Wabnitz, in ECOC 2012 (Optical Society of America, 2012), paper Th.2.E.2.

Opt. Express

Opt. Lett.

Phys. Lett. A

F. K. Abdullaev, S. A. Darmanyan, A. Kobyakov, and F. Lederer, Phys. Lett. A 220, 213 (1996).
[CrossRef]

Phys. Rev. A

M. Droques, A. Kudlinski, G. Bouwmans, G. Martinelli, and A. Mussot, Phys. Rev. A 87, 013813 (2013).
[CrossRef]

A. Armaroli and F. Biancalana, Phys. Rev. A 87, 063848 (2013).
[CrossRef]

Pure Appl. Opt.

K. Hizanidis, B. A. Malomed, H. E. Nistazakis, and D. J. Frantzeskakis, Pure Appl. Opt. 7, L57 (1998).
[CrossRef]

Science

T. J. Kippenberg, R. Holzwarth, and S. Diddams, Science 332, 555 (2011).
[CrossRef]

Other

A. A. Sysoliatin, M. Y. Salganskii, G. Manili, D. Modotto, and S. Wabnitz, in ECOC 2012 (Optical Society of America, 2012), paper Th.2.E.2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a) Measured values of average GVD (crosses) versus wavelength, with linear approximation as a guide to the eye (solid curve). The refractive index profile of the fiber preform is plotted as an inset. (b) Estimated periodic variation of the GVD at the pump wavelength of 1534.7 nm.

Fig. 2.
Fig. 2.

Sideband intensities versus frequency detuning from the pump, showing (a) the variation of the output spectrum versus input pump power in the range of 4–10 W. Magnification of the evolution with pump energy of the first and third sidebands is provided in panels (b1) and (b2), respectively.

Fig. 3.
Fig. 3.

Comparison of the experimental, numerical, and analytical dependence of first three QPM sidebands upon pump power P. Results are plotted in blue, green, and red for the first, second, and third sideband, respectively. Experimental results are plotted with filled markers, whereas analytical results from Eqs. (3) or (4) are plotted with dotted lines. For the third sideband, the measured data correspond to either the maximum of the third QPM sideband or of the FWM sideband once they merge. (a) Evolution of the sideband frequencies. Grey areas correspond to the 10 dB bandwidth of the numerically obtained sidebands. The dashed–dotted line represents the frequency resulting from FWM of the pump and the first QPM sideband. (b) Comparison of the gain obtained from numerical simulation (solid lines) with the predictions of Eq (4). (c) Experimental pump power dependence of spectral component peak power for the various sidebands.

Fig. 4.
Fig. 4.

Contour plot of (a) experimental and (b) numerical spectral intensity versus input pump power. Spectra obtained from simulations are averaged over 20 shots.

Fig. 5.
Fig. 5.

(a) Experimental variation of the output spectrum versus pump power for an initial incoherence width of 20 GHz. (b) Evolution of the output spectrum versus the incoherence width of the pump (as defined by the filter width) for a fixed input average power of 1.5 W.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

iψzβ2(z)22ψt2+γ|ψ|2ψ=0.
β2(z)=β2+β2Asin(2πz/Λ+ϕ),
Ωp=±2πp/Λ2γPβ2,
GpdB=10log10(2γPLJp(β2AΩp22π/Λ)),

Metrics