Abstract

We report experimental and theoretical studies of Raman-induced cross-phase modulational instabilities (XPMI) in a high-birefringence, normally dispersive optical fiber. Experimental results reveal that the Raman–Stokes wave, generated by a quasi-CW pump beam, interacts with the latter to create a novel type of XPMI sidebands. These sidebands are characterized by a narrow gain bandwidth. The sideband frequencies are well reproduced by a linear stability analysis as well as by full numerical solutions of the coupled generalized nonlinear Schrödinger equations.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. I. Bespalov and V. I. Talanov, JETP Lett. 3, 307 (1966).
  2. G. P. Agrawal, Nonlinear Fiber Optics, 5th ed. (Academic, 2013).
  3. K. Tai, A. Hasegawa, and A. Tomita, Phys. Rev. Lett. 56, 135 (1986).
    [CrossRef]
  4. J. E. Rothenberg, Phys. Rev. A 42, 682 (1990).
    [CrossRef]
  5. P. D. Drummond, T. A. B. Kennedy, J. M. Dudley, R. Leonhardt, and J. D. Harvey, Opt. Commun. 78, 137 (1990).
    [CrossRef]
  6. S. Trillo and S. Wabnitz, J. Opt. Soc. Am. B 9, 1061 (1992).
    [CrossRef]
  7. E. Seve, G. Millot, and S. Trillo, Phys. Rev. E 61, 3139 (2000).
    [CrossRef]
  8. E. Seve, P. Tchofo Dinda, G. Millot, M. Remoissenet, J. M. Bilbaut, and M. Haelterman, Phys. Rev. A 54, 3519 (1996).
    [CrossRef]
  9. P. Tchofo Dinda, G. Millot, E. Seve, and M. Haelterman, Opt. Lett. 21, 1640 (1996).
    [CrossRef]
  10. C. Xiong and W. J. Wadsworth, Opt. Express 16, 2438 (2008).
    [CrossRef]

2008 (1)

2000 (1)

E. Seve, G. Millot, and S. Trillo, Phys. Rev. E 61, 3139 (2000).
[CrossRef]

1996 (2)

E. Seve, P. Tchofo Dinda, G. Millot, M. Remoissenet, J. M. Bilbaut, and M. Haelterman, Phys. Rev. A 54, 3519 (1996).
[CrossRef]

P. Tchofo Dinda, G. Millot, E. Seve, and M. Haelterman, Opt. Lett. 21, 1640 (1996).
[CrossRef]

1992 (1)

1990 (2)

J. E. Rothenberg, Phys. Rev. A 42, 682 (1990).
[CrossRef]

P. D. Drummond, T. A. B. Kennedy, J. M. Dudley, R. Leonhardt, and J. D. Harvey, Opt. Commun. 78, 137 (1990).
[CrossRef]

1986 (1)

K. Tai, A. Hasegawa, and A. Tomita, Phys. Rev. Lett. 56, 135 (1986).
[CrossRef]

1966 (1)

V. I. Bespalov and V. I. Talanov, JETP Lett. 3, 307 (1966).

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics, 5th ed. (Academic, 2013).

Bespalov, V. I.

V. I. Bespalov and V. I. Talanov, JETP Lett. 3, 307 (1966).

Bilbaut, J. M.

E. Seve, P. Tchofo Dinda, G. Millot, M. Remoissenet, J. M. Bilbaut, and M. Haelterman, Phys. Rev. A 54, 3519 (1996).
[CrossRef]

Drummond, P. D.

P. D. Drummond, T. A. B. Kennedy, J. M. Dudley, R. Leonhardt, and J. D. Harvey, Opt. Commun. 78, 137 (1990).
[CrossRef]

Dudley, J. M.

P. D. Drummond, T. A. B. Kennedy, J. M. Dudley, R. Leonhardt, and J. D. Harvey, Opt. Commun. 78, 137 (1990).
[CrossRef]

Haelterman, M.

E. Seve, P. Tchofo Dinda, G. Millot, M. Remoissenet, J. M. Bilbaut, and M. Haelterman, Phys. Rev. A 54, 3519 (1996).
[CrossRef]

P. Tchofo Dinda, G. Millot, E. Seve, and M. Haelterman, Opt. Lett. 21, 1640 (1996).
[CrossRef]

Harvey, J. D.

P. D. Drummond, T. A. B. Kennedy, J. M. Dudley, R. Leonhardt, and J. D. Harvey, Opt. Commun. 78, 137 (1990).
[CrossRef]

Hasegawa, A.

K. Tai, A. Hasegawa, and A. Tomita, Phys. Rev. Lett. 56, 135 (1986).
[CrossRef]

Kennedy, T. A. B.

P. D. Drummond, T. A. B. Kennedy, J. M. Dudley, R. Leonhardt, and J. D. Harvey, Opt. Commun. 78, 137 (1990).
[CrossRef]

Leonhardt, R.

P. D. Drummond, T. A. B. Kennedy, J. M. Dudley, R. Leonhardt, and J. D. Harvey, Opt. Commun. 78, 137 (1990).
[CrossRef]

Millot, G.

E. Seve, G. Millot, and S. Trillo, Phys. Rev. E 61, 3139 (2000).
[CrossRef]

P. Tchofo Dinda, G. Millot, E. Seve, and M. Haelterman, Opt. Lett. 21, 1640 (1996).
[CrossRef]

E. Seve, P. Tchofo Dinda, G. Millot, M. Remoissenet, J. M. Bilbaut, and M. Haelterman, Phys. Rev. A 54, 3519 (1996).
[CrossRef]

Remoissenet, M.

E. Seve, P. Tchofo Dinda, G. Millot, M. Remoissenet, J. M. Bilbaut, and M. Haelterman, Phys. Rev. A 54, 3519 (1996).
[CrossRef]

Rothenberg, J. E.

J. E. Rothenberg, Phys. Rev. A 42, 682 (1990).
[CrossRef]

Seve, E.

E. Seve, G. Millot, and S. Trillo, Phys. Rev. E 61, 3139 (2000).
[CrossRef]

E. Seve, P. Tchofo Dinda, G. Millot, M. Remoissenet, J. M. Bilbaut, and M. Haelterman, Phys. Rev. A 54, 3519 (1996).
[CrossRef]

P. Tchofo Dinda, G. Millot, E. Seve, and M. Haelterman, Opt. Lett. 21, 1640 (1996).
[CrossRef]

Tai, K.

K. Tai, A. Hasegawa, and A. Tomita, Phys. Rev. Lett. 56, 135 (1986).
[CrossRef]

Talanov, V. I.

V. I. Bespalov and V. I. Talanov, JETP Lett. 3, 307 (1966).

Tchofo Dinda, P.

E. Seve, P. Tchofo Dinda, G. Millot, M. Remoissenet, J. M. Bilbaut, and M. Haelterman, Phys. Rev. A 54, 3519 (1996).
[CrossRef]

P. Tchofo Dinda, G. Millot, E. Seve, and M. Haelterman, Opt. Lett. 21, 1640 (1996).
[CrossRef]

Tomita, A.

K. Tai, A. Hasegawa, and A. Tomita, Phys. Rev. Lett. 56, 135 (1986).
[CrossRef]

Trillo, S.

E. Seve, G. Millot, and S. Trillo, Phys. Rev. E 61, 3139 (2000).
[CrossRef]

S. Trillo and S. Wabnitz, J. Opt. Soc. Am. B 9, 1061 (1992).
[CrossRef]

Wabnitz, S.

Wadsworth, W. J.

Xiong, C.

J. Opt. Soc. Am. B (1)

JETP Lett. (1)

V. I. Bespalov and V. I. Talanov, JETP Lett. 3, 307 (1966).

Opt. Commun. (1)

P. D. Drummond, T. A. B. Kennedy, J. M. Dudley, R. Leonhardt, and J. D. Harvey, Opt. Commun. 78, 137 (1990).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Phys. Rev. A (2)

J. E. Rothenberg, Phys. Rev. A 42, 682 (1990).
[CrossRef]

E. Seve, P. Tchofo Dinda, G. Millot, M. Remoissenet, J. M. Bilbaut, and M. Haelterman, Phys. Rev. A 54, 3519 (1996).
[CrossRef]

Phys. Rev. E (1)

E. Seve, G. Millot, and S. Trillo, Phys. Rev. E 61, 3139 (2000).
[CrossRef]

Phys. Rev. Lett. (1)

K. Tai, A. Hasegawa, and A. Tomita, Phys. Rev. Lett. 56, 135 (1986).
[CrossRef]

Other (1)

G. P. Agrawal, Nonlinear Fiber Optics, 5th ed. (Academic, 2013).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

On the left, experimental setup: P, polarizer; HWP, half-wave plate; OSA, optical spectrum analyzer; A, analyzer. On the right, sideband generation process: (a) In the first stage of propagation, the pump generates a first pair of sidebands. Then, as the first-order RSw acquires enough power to act as a second pump, three additional pairs of XPMI sidebands are generated, namely: (b) one generated from the RSw alone; and (c) the two others generated from the interaction between the initial pump and the RSw. (d) Finally, four pairs of sidebands are present at the fiber output. P-XPMI, Pump XPMI configuration; R-XPMI, Raman XPMI configuration; PR-XPMI, Pump-Raman XPMI configuration; RP-XPMI, Raman Pump XPMI configuration; Pas, Pump-anti-Stokes sideband; Ps, Pump-Stokes sideband; Ras, Raman-anti-Stokes sideband; Rs, Raman–Stokes sideband; PRas, Pump-Raman anti-Stokes sideband; PRs, Pump-Raman–Stokes sideband; RPas, Raman-Pump-anti-Stokes sideband; RPs, Raman-Pump-Stokes sideband.

Fig. 2.
Fig. 2.

(a) Experimental spectrum at the fiber output at the pump peak power of 101 W. Inset: the “classical” P-XPMI sidebands. (b) Numerical spectrum. Inset: comparison between experimental (blue line) and numerical spectrum (red line) around the pump wavelength.

Fig. 3.
Fig. 3.

Same as in Fig. 2, for 183 W pump peak power. The insets highlight the “classical” XPMI sidebands (inner pair) together with the new XPMI sideband pair around the pump wavelength.

Fig. 4.
Fig. 4.

Evolution of XPMI output spectra for increasing pump power. The inset highlights the sidebands located around the pump wavelength.

Fig. 5.
Fig. 5.

MI gain spectra for different pump configurations. (a) Single-frequency (ωP=ωR) dual polarization configuration. (b),(c) Dual-frequency configurations (ωPωR) with (b) ωR(ωP) polarized along the fast (slow) axis and with (c) ωR(ωP) polarized along the slow (fast) axis. The GVM parameter is (a) δ=0.3667ps/m, (b) δ=5.2158ps/m, (c) δ=4.4825ps/m. (d) Superposition of all spectra.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Exz+δ2Ext+iβ2x2Ext=iγx(|Ex|2+23|Ey|2)ExEyzδ2Eyt+iβ2y2Eyt=iγy(|Ey|2+23|Ex|2)Ey,
δ=δ0+Δω(β2x+β2y2),

Metrics