Abstract

We carry out experimental measurement of the scintillation index of a partially coherent beam-carrying vortex phase (i.e., Gaussian–Schell model vortex beam) propagating through thermally induced turbulence. It is demonstrated that a Gaussian–Schell model vortex beam has appreciably smaller scintillation than a Gaussian–Schell model beam, which will be useful in free-space optical communication.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, 1978), Vol. 2.
  2. L. C. Andrews, R. L. Phillips, and C. Y. Hopen, Laser Beam Scintillation with Applications (SPIE, 2001).
  3. S. J. Wang, Y. Baykal, and M. A. Plonus, J. Opt. Soc. Am. 73, 831 (1983).
    [CrossRef]
  4. V. A. Banakh, V. M. Buldakov, and V. L. Mironov, Opt. Spektrosk. 54, 1054 (1983).
  5. Y. Baykal and H. T. Eyyuboğlu, Appl. Opt. 45, 3793 (2006).
    [CrossRef]
  6. Y. Cai, Y. Chen, H. T. Eyyuboğlu, and Y. Baykal, Opt. Lett. 32, 2405 (2007).
    [CrossRef]
  7. Y. Gu, O. Korotkova, and G. Gbur, Opt. Lett. 34, 2261 (2009).
    [CrossRef]
  8. Y. Gu and G. Gbur, Opt. Lett. 35, 3456 (2010).
    [CrossRef]
  9. Y. Gu and G. Gbur, Opt. Lett. 37, 1553 (2012).
    [CrossRef]
  10. W. Chen, J. W. Haus, and Q. Zhan, Opt. Express 17, 17829 (2009).
    [CrossRef]
  11. Y. Baykal, H. T. Eyyuboğlu, and Y. Cai, Appl. Opt. 48, 1943 (2009).
    [CrossRef]
  12. O. Korotkova, Opt. Commun. 281, 2342 (2008).
    [CrossRef]
  13. Y. Gu and G. Gbur, Opt. Lett. 38, 1395 (2013).
    [CrossRef]
  14. Y. Yuan, X. Liu, F. Wang, Y. Chen, Y. Cai, J. Qu, and H. T. Eyyuboğlu, Opt. Commun. 305, 57 (2013).
    [CrossRef]
  15. F. Wang, X. Liu, L. Liu, Y. Yuan, and Y. Cai, Appl. Phys. Lett. 103, 091102 (2013).
    [CrossRef]
  16. F. Wang, Y. Cai, H. T. Eyyuboğlu, and Y. Baykal, Opt. Lett. 37, 184 (2012).
    [CrossRef]
  17. F. Wang, S. Zhu, and Y. Cai, Opt. Lett. 36, 3281 (2011).
    [CrossRef]
  18. P. De Santis, F. Gori, G. Guattari, and C. Palma, Opt. Commun. 29, 256 (1979).
    [CrossRef]
  19. L. Mandel and E. Wolf, eds., Optical Coherence and Quantum Optics (Cambridge University, 1995), pp. 36–38, 428.
  20. F. Wang and Y. Cai, J. Opt. Soc. Am. A 24, 1937 (2007).
    [CrossRef]
  21. A. Kumar, J. Banerji, and R. P. Singh, Opt. Lett. 35, 3841 (2010).
    [CrossRef]
  22. C. Aime, J. Borgnino, F. Martin, R. Petrov, and G. Ricort, J. Opt. Soc. Am. A 3, 1001 (1986).
    [CrossRef]

2013 (3)

Y. Yuan, X. Liu, F. Wang, Y. Chen, Y. Cai, J. Qu, and H. T. Eyyuboğlu, Opt. Commun. 305, 57 (2013).
[CrossRef]

F. Wang, X. Liu, L. Liu, Y. Yuan, and Y. Cai, Appl. Phys. Lett. 103, 091102 (2013).
[CrossRef]

Y. Gu and G. Gbur, Opt. Lett. 38, 1395 (2013).
[CrossRef]

2012 (2)

2011 (1)

2010 (2)

2009 (3)

2008 (1)

O. Korotkova, Opt. Commun. 281, 2342 (2008).
[CrossRef]

2007 (2)

2006 (1)

1986 (1)

1983 (2)

S. J. Wang, Y. Baykal, and M. A. Plonus, J. Opt. Soc. Am. 73, 831 (1983).
[CrossRef]

V. A. Banakh, V. M. Buldakov, and V. L. Mironov, Opt. Spektrosk. 54, 1054 (1983).

1979 (1)

P. De Santis, F. Gori, G. Guattari, and C. Palma, Opt. Commun. 29, 256 (1979).
[CrossRef]

Aime, C.

Andrews, L. C.

L. C. Andrews, R. L. Phillips, and C. Y. Hopen, Laser Beam Scintillation with Applications (SPIE, 2001).

Banakh, V. A.

V. A. Banakh, V. M. Buldakov, and V. L. Mironov, Opt. Spektrosk. 54, 1054 (1983).

Banerji, J.

Baykal, Y.

Borgnino, J.

Buldakov, V. M.

V. A. Banakh, V. M. Buldakov, and V. L. Mironov, Opt. Spektrosk. 54, 1054 (1983).

Cai, Y.

Chen, W.

Chen, Y.

Y. Yuan, X. Liu, F. Wang, Y. Chen, Y. Cai, J. Qu, and H. T. Eyyuboğlu, Opt. Commun. 305, 57 (2013).
[CrossRef]

Y. Cai, Y. Chen, H. T. Eyyuboğlu, and Y. Baykal, Opt. Lett. 32, 2405 (2007).
[CrossRef]

De Santis, P.

P. De Santis, F. Gori, G. Guattari, and C. Palma, Opt. Commun. 29, 256 (1979).
[CrossRef]

Eyyuboglu, H. T.

Gbur, G.

Gori, F.

P. De Santis, F. Gori, G. Guattari, and C. Palma, Opt. Commun. 29, 256 (1979).
[CrossRef]

Gu, Y.

Guattari, G.

P. De Santis, F. Gori, G. Guattari, and C. Palma, Opt. Commun. 29, 256 (1979).
[CrossRef]

Haus, J. W.

Hopen, C. Y.

L. C. Andrews, R. L. Phillips, and C. Y. Hopen, Laser Beam Scintillation with Applications (SPIE, 2001).

Ishimaru, A.

A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, 1978), Vol. 2.

Korotkova, O.

Kumar, A.

Liu, L.

F. Wang, X. Liu, L. Liu, Y. Yuan, and Y. Cai, Appl. Phys. Lett. 103, 091102 (2013).
[CrossRef]

Liu, X.

F. Wang, X. Liu, L. Liu, Y. Yuan, and Y. Cai, Appl. Phys. Lett. 103, 091102 (2013).
[CrossRef]

Y. Yuan, X. Liu, F. Wang, Y. Chen, Y. Cai, J. Qu, and H. T. Eyyuboğlu, Opt. Commun. 305, 57 (2013).
[CrossRef]

Martin, F.

Mironov, V. L.

V. A. Banakh, V. M. Buldakov, and V. L. Mironov, Opt. Spektrosk. 54, 1054 (1983).

Palma, C.

P. De Santis, F. Gori, G. Guattari, and C. Palma, Opt. Commun. 29, 256 (1979).
[CrossRef]

Petrov, R.

Phillips, R. L.

L. C. Andrews, R. L. Phillips, and C. Y. Hopen, Laser Beam Scintillation with Applications (SPIE, 2001).

Plonus, M. A.

Qu, J.

Y. Yuan, X. Liu, F. Wang, Y. Chen, Y. Cai, J. Qu, and H. T. Eyyuboğlu, Opt. Commun. 305, 57 (2013).
[CrossRef]

Ricort, G.

Singh, R. P.

Wang, F.

F. Wang, X. Liu, L. Liu, Y. Yuan, and Y. Cai, Appl. Phys. Lett. 103, 091102 (2013).
[CrossRef]

Y. Yuan, X. Liu, F. Wang, Y. Chen, Y. Cai, J. Qu, and H. T. Eyyuboğlu, Opt. Commun. 305, 57 (2013).
[CrossRef]

F. Wang, Y. Cai, H. T. Eyyuboğlu, and Y. Baykal, Opt. Lett. 37, 184 (2012).
[CrossRef]

F. Wang, S. Zhu, and Y. Cai, Opt. Lett. 36, 3281 (2011).
[CrossRef]

F. Wang and Y. Cai, J. Opt. Soc. Am. A 24, 1937 (2007).
[CrossRef]

Wang, S. J.

Yuan, Y.

Y. Yuan, X. Liu, F. Wang, Y. Chen, Y. Cai, J. Qu, and H. T. Eyyuboğlu, Opt. Commun. 305, 57 (2013).
[CrossRef]

F. Wang, X. Liu, L. Liu, Y. Yuan, and Y. Cai, Appl. Phys. Lett. 103, 091102 (2013).
[CrossRef]

Zhan, Q.

Zhu, S.

Appl. Opt. (2)

Appl. Phys. Lett. (1)

F. Wang, X. Liu, L. Liu, Y. Yuan, and Y. Cai, Appl. Phys. Lett. 103, 091102 (2013).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (2)

Opt. Commun. (3)

P. De Santis, F. Gori, G. Guattari, and C. Palma, Opt. Commun. 29, 256 (1979).
[CrossRef]

O. Korotkova, Opt. Commun. 281, 2342 (2008).
[CrossRef]

Y. Yuan, X. Liu, F. Wang, Y. Chen, Y. Cai, J. Qu, and H. T. Eyyuboğlu, Opt. Commun. 305, 57 (2013).
[CrossRef]

Opt. Express (1)

Opt. Lett. (8)

Opt. Spektrosk. (1)

V. A. Banakh, V. M. Buldakov, and V. L. Mironov, Opt. Spektrosk. 54, 1054 (1983).

Other (3)

A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, 1978), Vol. 2.

L. C. Andrews, R. L. Phillips, and C. Y. Hopen, Laser Beam Scintillation with Applications (SPIE, 2001).

L. Mandel and E. Wolf, eds., Optical Coherence and Quantum Optics (Cambridge University, 1995), pp. 36–38, 428.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Experimental setup for generating a GSMV beam, measuring its spatial coherence width, and measuring the scintillation index of the generated beam propagating through thermally induced turbulence. RM, reflecting mirror; L1, L2, L3, L4, thin lenses; RGGD, rotating ground-glass disk; GAF, Gaussian amplitude filter; SPP, spiral phase plate; BS1, BS2, beam splitters; D1, D2, single photon detectors; ECC, electronic coincidence circuit; CCD, charge-coupled device; PC, personal computer.

Fig. 2.
Fig. 2.

Experimental results of the intensity distributions of the generated GSM beam and GSMV beam (l=1,2) with σg=1.2mm at z=10cm (a)–(c) and in the receiver plane (d)–(f).

Fig. 3.
Fig. 3.

Experimental results of (a) the characteristic time τs versus the initial coherence width σg and (b) the characteristic time τa versus the temperature of the hot plate.

Fig. 4.
Fig. 4.

Experimental results of the scintillation index of a GSM or GSMV beam (l=1,2) at the centroid versus the initial coherence width.

Fig. 5.
Fig. 5.

Experimental results of the scintillation index of a GSM or GSMV beam (l=1,2) at the centroid versus the temperature of the hot plate for two different values of σg.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

ΓGSM(r1,r2)=exp[r12+r224σ02(r1r2)22σg2],
ΓGSMV(r1,r2)=exp[r12+r224σ02(r1r2)22σg2]exp[il(φ1φ2)],
g(2)(u1,u2,τ)=ΔI(u1,t)ΔI(u2,t+τ)I(u1,t)I(u2,t+τ),
ΔI(u1,t)=I(u1,t)I(u1,t),
ΔI(u2,t+τ)=I(u2,t+τ)I(u2,t+τ).
g(2)(u1,u2,0)=exp[(u1u2)2/σg2].
g(2)(0,0,τ)=exp(τ2/τs2),
g(2)(0,0,τ)=Aexp(τ/τa).
mc2=I2(x,y)/I(x,y)21,
x¯n=ijxiIn(xi,yj)/ijIn(xi,yj),
y¯n=ijyiIn(xi,yj)/ijIn(xi,yj).
mc2=NIn2(x¯n,y¯n)/NI¯21,
I¯=NIn(x¯n,y¯n)/N.

Metrics