Abstract

We studied vector frequency conversion in externally tuned microstructured fibers for applications as a novel, nonlinear fiber-optic sensor. We investigated both experimentally and numerically a possibility of shifting vector and scalar modulation instability gain bands by pressure-induced changes in the linear properties of a microstructured fiber. Our results show that polarization-dependent vector nonlinear processes sensitive to variation of fiber group velocity difference (group birefringence) exhibit a clear advantage for pressure-sensing applications compared with scalar nonlinear processes only sensitive to group velocity dispersion changes. Analytical predictions and numerical simulations confirm our measurement results.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Culshow and J. Dakin, Optical Fiber Sensors: Systems and Applications (Artech House, 1988), Vol. 1.
  2. K. T. V. Grattan and B. T. Meggitt, Optical Fiber Sensor Technology (Chapman & Hall, 1995).
  3. B. Lee, Opt. Fiber Technol. 9, 57 (2003).
    [CrossRef]
  4. O. Frazão, J. L. Santos, F. M. Araújo, and L. A. Ferreira, Laser Photon. Rev. 2, 449 (2008).
    [CrossRef]
  5. J. R. Ott, M. Heuck, C. Agger, P. D. Rasmussen, and O. Bang, Opt. Express 16, 20834 (2008).
    [CrossRef]
  6. M. H. Frosz, A. Stefani, and O. Bang, Opt. Express 19, 10471 (2011).
  7. B. Gu, W. Yuan, M. H. Frosz, A. P. Zhang, S. He, and O. Bang, Opt. Lett. 37, 794 (2012).
    [CrossRef]
  8. A. Kudlinski, R. Habert, M. Droques, G. Beck, L. Bigot, and A. Mussot, IEEE Photon. Technol. Lett. 24, 431 (2012).
    [CrossRef]
  9. K. K. Y. Wong, M. E. Marhic, and L. G. Kazovsky, Opt. Express 13, 4666 (2005).
    [CrossRef]
  10. T. Martynkien, G. Statkiewicz-Barabach, J. Olszewski, J. Wojcik, P. Mergo, T. Geernaert, C. Sonnenfeld, A. Anuszkiewicz, M. K. Szczurowski, K. Tarnowski, M. Makara, K. Skorupski, J. Klimek, K. Poturaj, W. Urbanczyk, T. Nasilowski, F. Berghmans, and H. Thienpont, Opt. Express 18, 15113 (2010).
    [CrossRef]
  11. A. Anuszkiewicz, G. Statkiewicz-Barabach, T. Borsukowski, J. Olszewski, T. Martynkien, W. Urbanczyk, P. Mergo, M. Makara, K. Poturaj, T. Geernaert, F. Berghmans, and H. Thienpont, Opt. Express 20, 23320 (2012).
    [CrossRef]
  12. M. Szpulak, T. Martynkien, and W. Urbanczyk, Appl. Opt. 43, 4739 (2004).
    [CrossRef]
  13. F. Biancalana and D. V. Skryabin, J. Opt. A 6, 301 (2004).
    [CrossRef]
  14. G. P. Agrawal, Nonlinear Fiber Optics, 5th ed. (Academic, 2013).
  15. B. Kibler, C. Billet, J. M. Dudley, R. S. Windeler, and G. Millot, Opt. Lett. 29, 1903 (2004).
    [CrossRef]
  16. Z. Wei, D. Song, Q. Zhao, and H.-L. Cui, IEEE Sens. J. 8, 1615 (2008).
    [CrossRef]

2012 (3)

2011 (1)

2010 (1)

2008 (3)

Z. Wei, D. Song, Q. Zhao, and H.-L. Cui, IEEE Sens. J. 8, 1615 (2008).
[CrossRef]

O. Frazão, J. L. Santos, F. M. Araújo, and L. A. Ferreira, Laser Photon. Rev. 2, 449 (2008).
[CrossRef]

J. R. Ott, M. Heuck, C. Agger, P. D. Rasmussen, and O. Bang, Opt. Express 16, 20834 (2008).
[CrossRef]

2005 (1)

2004 (3)

2003 (1)

B. Lee, Opt. Fiber Technol. 9, 57 (2003).
[CrossRef]

Agger, C.

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics, 5th ed. (Academic, 2013).

Anuszkiewicz, A.

Araújo, F. M.

O. Frazão, J. L. Santos, F. M. Araújo, and L. A. Ferreira, Laser Photon. Rev. 2, 449 (2008).
[CrossRef]

Bang, O.

Beck, G.

A. Kudlinski, R. Habert, M. Droques, G. Beck, L. Bigot, and A. Mussot, IEEE Photon. Technol. Lett. 24, 431 (2012).
[CrossRef]

Berghmans, F.

Biancalana, F.

F. Biancalana and D. V. Skryabin, J. Opt. A 6, 301 (2004).
[CrossRef]

Bigot, L.

A. Kudlinski, R. Habert, M. Droques, G. Beck, L. Bigot, and A. Mussot, IEEE Photon. Technol. Lett. 24, 431 (2012).
[CrossRef]

Billet, C.

Borsukowski, T.

Cui, H.-L.

Z. Wei, D. Song, Q. Zhao, and H.-L. Cui, IEEE Sens. J. 8, 1615 (2008).
[CrossRef]

Culshow, B.

B. Culshow and J. Dakin, Optical Fiber Sensors: Systems and Applications (Artech House, 1988), Vol. 1.

Dakin, J.

B. Culshow and J. Dakin, Optical Fiber Sensors: Systems and Applications (Artech House, 1988), Vol. 1.

Droques, M.

A. Kudlinski, R. Habert, M. Droques, G. Beck, L. Bigot, and A. Mussot, IEEE Photon. Technol. Lett. 24, 431 (2012).
[CrossRef]

Dudley, J. M.

Ferreira, L. A.

O. Frazão, J. L. Santos, F. M. Araújo, and L. A. Ferreira, Laser Photon. Rev. 2, 449 (2008).
[CrossRef]

Frazão, O.

O. Frazão, J. L. Santos, F. M. Araújo, and L. A. Ferreira, Laser Photon. Rev. 2, 449 (2008).
[CrossRef]

Frosz, M. H.

Geernaert, T.

Grattan, K. T. V.

K. T. V. Grattan and B. T. Meggitt, Optical Fiber Sensor Technology (Chapman & Hall, 1995).

Gu, B.

Habert, R.

A. Kudlinski, R. Habert, M. Droques, G. Beck, L. Bigot, and A. Mussot, IEEE Photon. Technol. Lett. 24, 431 (2012).
[CrossRef]

He, S.

Heuck, M.

Kazovsky, L. G.

Kibler, B.

Klimek, J.

Kudlinski, A.

A. Kudlinski, R. Habert, M. Droques, G. Beck, L. Bigot, and A. Mussot, IEEE Photon. Technol. Lett. 24, 431 (2012).
[CrossRef]

Lee, B.

B. Lee, Opt. Fiber Technol. 9, 57 (2003).
[CrossRef]

Makara, M.

Marhic, M. E.

Martynkien, T.

Meggitt, B. T.

K. T. V. Grattan and B. T. Meggitt, Optical Fiber Sensor Technology (Chapman & Hall, 1995).

Mergo, P.

Millot, G.

Mussot, A.

A. Kudlinski, R. Habert, M. Droques, G. Beck, L. Bigot, and A. Mussot, IEEE Photon. Technol. Lett. 24, 431 (2012).
[CrossRef]

Nasilowski, T.

Olszewski, J.

Ott, J. R.

Poturaj, K.

Rasmussen, P. D.

Santos, J. L.

O. Frazão, J. L. Santos, F. M. Araújo, and L. A. Ferreira, Laser Photon. Rev. 2, 449 (2008).
[CrossRef]

Skorupski, K.

Skryabin, D. V.

F. Biancalana and D. V. Skryabin, J. Opt. A 6, 301 (2004).
[CrossRef]

Song, D.

Z. Wei, D. Song, Q. Zhao, and H.-L. Cui, IEEE Sens. J. 8, 1615 (2008).
[CrossRef]

Sonnenfeld, C.

Statkiewicz-Barabach, G.

Stefani, A.

Szczurowski, M. K.

Szpulak, M.

Tarnowski, K.

Thienpont, H.

Urbanczyk, W.

Wei, Z.

Z. Wei, D. Song, Q. Zhao, and H.-L. Cui, IEEE Sens. J. 8, 1615 (2008).
[CrossRef]

Windeler, R. S.

Wojcik, J.

Wong, K. K. Y.

Yuan, W.

Zhang, A. P.

Zhao, Q.

Z. Wei, D. Song, Q. Zhao, and H.-L. Cui, IEEE Sens. J. 8, 1615 (2008).
[CrossRef]

Appl. Opt. (1)

IEEE Photon. Technol. Lett. (1)

A. Kudlinski, R. Habert, M. Droques, G. Beck, L. Bigot, and A. Mussot, IEEE Photon. Technol. Lett. 24, 431 (2012).
[CrossRef]

IEEE Sens. J. (1)

Z. Wei, D. Song, Q. Zhao, and H.-L. Cui, IEEE Sens. J. 8, 1615 (2008).
[CrossRef]

J. Opt. A (1)

F. Biancalana and D. V. Skryabin, J. Opt. A 6, 301 (2004).
[CrossRef]

Laser Photon. Rev. (1)

O. Frazão, J. L. Santos, F. M. Araújo, and L. A. Ferreira, Laser Photon. Rev. 2, 449 (2008).
[CrossRef]

Opt. Express (5)

Opt. Fiber Technol. (1)

B. Lee, Opt. Fiber Technol. 9, 57 (2003).
[CrossRef]

Opt. Lett. (2)

Other (3)

G. P. Agrawal, Nonlinear Fiber Optics, 5th ed. (Academic, 2013).

B. Culshow and J. Dakin, Optical Fiber Sensors: Systems and Applications (Artech House, 1988), Vol. 1.

K. T. V. Grattan and B. T. Meggitt, Optical Fiber Sensor Technology (Chapman & Hall, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a) Scanning electron microscope image of the microstructured fiber cross section with an elliptical GeO2-doped inclusion in the core. (b) Spectral dependence of phase birefringence B and group birefringence G calculated for different pressures.

Fig. 2.
Fig. 2.

Schematic diagram of the experimental setup for investigating the effect of hydrostatic pressure on MI bands. The light source is a passively Q-switched Nd:YAG laser. P, polarizer; H, half-wave plate; O, microscope objective; A, analyzer; OSA, optical spectrum analyzer.

Fig. 3.
Fig. 3.

(a), (b) Measured spectra of the MI bands for different pressures. (c), (d) Zoom of the vector MI bands. (e), (f) Frequency shifts of the vector MI peaks versus applied pressure and corresponding linear fits for anti-Stokes and Stokes bands (slope value of the linear fit is indicated).

Fig. 4.
Fig. 4.

(a) Averaged output spectra obtained from numerical simulations for different values of pressure applied to the central part of the fiber. Arrows indicate the expected shift direction of the vector MI bands. (b) Frequency shift of the vector anti-Stokes band during propagation along the fiber for two applied pressures (the horizontal black solid line indicates the analytical calculation of the vector MI position for 2 MPa relative to the position at atmospheric pressure). (c) Frequency shift of the vector anti-Stokes peak as a function of applied pressure and corresponding linear fit (the slope value of the linear fit is indicated). Note that similar frequency shift is obtained for the Stokes band.

Fig. 5.
Fig. 5.

Peak intensity IV of the vector MI bands at the fiber output as a function of applied pressure obtained experimentally and by numerical simulations.

Metrics