Abstract

A microwave photonics phase detector is conceived and practically demonstrated. The phase-detector system employs a semiconductor optical amplifier as a four-wave mixer to enable phase detection over a broad frequency range. The system behavior is first mathematically modeled and then demonstrated practically. Phase measurement over a frequency range of 1–18 GHz is achieved. This phase detector is an excellent candidate for wideband applications such as frequency-agile radar.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. R. Kuhn and S. K. Orr, “Wideband radar detector”, U.S. patent5,305,007 A (April19, 1994).
  2. H. J. Krizek and G. M. Johnsen, “Frequency agile radar”, U.S. patent5,347,283 (September13, 1994).
  3. J. Capmany and D. Novak, Nat. Photonics 1, 319 (2007).
    [CrossRef]
  4. J. Yao, J. Lightwave Technol. 27, 314 (2009).
  5. R. A. Minasian, IEEE Trans. Microw. Theory Tech. 54, 832 (2006).
  6. A. J. Seeds and K. J. Williams, J. Lightwave Technol. 24, 4628 (2006).
  7. H. Emami, N. Sarkhosh, E. R. L. Lara, and A. Mitchell, J. Lightwave Technol. 30, 2725 (2012).
  8. N. Sarkhosh, H. Emami, L. A. Bui, and A. Mitchell, in Proceedings of 2008 IEEE-MTT-S International Microwave Symposium Digest, (Institute of Electrical and Electronics Engineers, 2008), pp. 599–601.
  9. H. Emami, N. Sarkhosh, L. A. Bui, and A. Mitchell, Opt. Lett. 33, 98 (2008).
    [CrossRef]
  10. M. H. Asghari and J. Azana, Opt. Lett. 34, 334 (2009).
    [CrossRef]
  11. L. A. Bui and A. Mitchell, in Proceedings of 2012 MWP International Topical Meeting on Microwave Photonics (MWP), Noordwijk, 2008 pp. 323–326.

2012 (1)

2009 (2)

2008 (1)

2007 (1)

J. Capmany and D. Novak, Nat. Photonics 1, 319 (2007).
[CrossRef]

2006 (2)

R. A. Minasian, IEEE Trans. Microw. Theory Tech. 54, 832 (2006).

A. J. Seeds and K. J. Williams, J. Lightwave Technol. 24, 4628 (2006).

Asghari, M. H.

Azana, J.

Bui, L. A.

H. Emami, N. Sarkhosh, L. A. Bui, and A. Mitchell, Opt. Lett. 33, 98 (2008).
[CrossRef]

N. Sarkhosh, H. Emami, L. A. Bui, and A. Mitchell, in Proceedings of 2008 IEEE-MTT-S International Microwave Symposium Digest, (Institute of Electrical and Electronics Engineers, 2008), pp. 599–601.

L. A. Bui and A. Mitchell, in Proceedings of 2012 MWP International Topical Meeting on Microwave Photonics (MWP), Noordwijk, 2008 pp. 323–326.

Capmany, J.

J. Capmany and D. Novak, Nat. Photonics 1, 319 (2007).
[CrossRef]

Emami, H.

H. Emami, N. Sarkhosh, E. R. L. Lara, and A. Mitchell, J. Lightwave Technol. 30, 2725 (2012).

H. Emami, N. Sarkhosh, L. A. Bui, and A. Mitchell, Opt. Lett. 33, 98 (2008).
[CrossRef]

N. Sarkhosh, H. Emami, L. A. Bui, and A. Mitchell, in Proceedings of 2008 IEEE-MTT-S International Microwave Symposium Digest, (Institute of Electrical and Electronics Engineers, 2008), pp. 599–601.

Johnsen, G. M.

H. J. Krizek and G. M. Johnsen, “Frequency agile radar”, U.S. patent5,347,283 (September13, 1994).

Krizek, H. J.

H. J. Krizek and G. M. Johnsen, “Frequency agile radar”, U.S. patent5,347,283 (September13, 1994).

Kuhn, J. R.

J. R. Kuhn and S. K. Orr, “Wideband radar detector”, U.S. patent5,305,007 A (April19, 1994).

Lara, E. R. L.

Minasian, R. A.

R. A. Minasian, IEEE Trans. Microw. Theory Tech. 54, 832 (2006).

Mitchell, A.

H. Emami, N. Sarkhosh, E. R. L. Lara, and A. Mitchell, J. Lightwave Technol. 30, 2725 (2012).

H. Emami, N. Sarkhosh, L. A. Bui, and A. Mitchell, Opt. Lett. 33, 98 (2008).
[CrossRef]

N. Sarkhosh, H. Emami, L. A. Bui, and A. Mitchell, in Proceedings of 2008 IEEE-MTT-S International Microwave Symposium Digest, (Institute of Electrical and Electronics Engineers, 2008), pp. 599–601.

L. A. Bui and A. Mitchell, in Proceedings of 2012 MWP International Topical Meeting on Microwave Photonics (MWP), Noordwijk, 2008 pp. 323–326.

Novak, D.

J. Capmany and D. Novak, Nat. Photonics 1, 319 (2007).
[CrossRef]

Orr, S. K.

J. R. Kuhn and S. K. Orr, “Wideband radar detector”, U.S. patent5,305,007 A (April19, 1994).

Sarkhosh, N.

H. Emami, N. Sarkhosh, E. R. L. Lara, and A. Mitchell, J. Lightwave Technol. 30, 2725 (2012).

H. Emami, N. Sarkhosh, L. A. Bui, and A. Mitchell, Opt. Lett. 33, 98 (2008).
[CrossRef]

N. Sarkhosh, H. Emami, L. A. Bui, and A. Mitchell, in Proceedings of 2008 IEEE-MTT-S International Microwave Symposium Digest, (Institute of Electrical and Electronics Engineers, 2008), pp. 599–601.

Seeds, A. J.

Williams, K. J.

Yao, J.

IEEE Trans. Microw. Theory Tech. (1)

R. A. Minasian, IEEE Trans. Microw. Theory Tech. 54, 832 (2006).

J. Lightwave Technol. (3)

Nat. Photonics (1)

J. Capmany and D. Novak, Nat. Photonics 1, 319 (2007).
[CrossRef]

Opt. Lett. (2)

Other (4)

N. Sarkhosh, H. Emami, L. A. Bui, and A. Mitchell, in Proceedings of 2008 IEEE-MTT-S International Microwave Symposium Digest, (Institute of Electrical and Electronics Engineers, 2008), pp. 599–601.

L. A. Bui and A. Mitchell, in Proceedings of 2012 MWP International Topical Meeting on Microwave Photonics (MWP), Noordwijk, 2008 pp. 323–326.

J. R. Kuhn and S. K. Orr, “Wideband radar detector”, U.S. patent5,305,007 A (April19, 1994).

H. J. Krizek and G. M. Johnsen, “Frequency agile radar”, U.S. patent5,347,283 (September13, 1994).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Block diagram of a simple phase detector.

Fig. 2.
Fig. 2.

Experimental setup of the proposed phase detector.

Fig. 3.
Fig. 3.

Simple configuration to produce the required RF tones for the system of Fig. 2

Fig. 4.
Fig. 4.

Measured phase versus input phase.

Fig. 5.
Fig. 5.

Phase measurement error.

Tables (1)

Tables Icon

Table 1. Maximum Phase Measurement Error

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

E1(t)=Eoejω1t,andE2(t)=Eoejω2t,
E1(t)=E1(t)Lcos[πVocosΩt2Vπ+π4]E2(t)=E2(t)Lcos[πVocos(Ωt+φ)2Vπ+π4],
E1(t)=22E1(t)L[cos(αcosΩt)+sin(αcosΩ)],
E2(t)=22E2(t)L×[cos(αcos(Ωt+φ))+sin(αcos(Ωt+φ))],
E1(t)=22E1(t)L×[J0(α)+2J1(α)cosΩt].
E1(t)=22E1(t)L×[1+αcosΩt].
E2(t)=22E2(t)L×[1+αcos(Ωt+φ)].
E=38GL32Eo3(1+αcosΩt)2×[1+αcos(Ωt+φ)]ej(2ω1ω2)t,
I=RE×E*,
Idc=916RG2L3Eo6[14+α2(92+cosφ)],
Iac=916RG2L3Eo6α[cos(Ωt+φ)+2cosΩt].
V1=916RG2L3LHGEDZLPo3[14+α2(92+cosφ)],
V2=916RG2L3LLZLPo3α[cos(Ωt+φ)+2cosΩt],

Metrics