Abstract

We report a sub-bandgap linear-absorption-based photodetector in avalanche mode at 1550 nm in a PN-diode-integrated silicon microring resonator. The photocurrent is primarily generated by the defect-state absorption introduced by the boron and phosphorous ion implantation during the PN diode formation. The responsivity is enhanced by both the cavity effect and the avalanche multiplication. We measure a responsivity of 72.8mA/W upon 8 V at cavity resonances in avalanche mode, corresponding to a gain of 72 relative to the responsivity of 1.0mA/W upon 3 V at cavity resonances in normal mode. Our device exhibits a 3 dB bandwidth of 7GHz and an open eye diagram at 15Gbit/s upon 8 V.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Baehr-Jones, M. Hochberg, and A. Scherer, Opt. Express 16, 1659 (2008).
    [CrossRef]
  2. H. Chen, X. Luo, and A. W. Poon, Appl. Phys. Lett. 95, 171111 (2009).
    [CrossRef]
  3. M. Geis, S. Spector, M. Grein, J. Yoon, D. Lennon, and T. Lyszczarz, Opt. Express 17, 5193 (2009).
    [CrossRef]
  4. H. Yu, D. Korn, M. Pantouvaki, J. Van Campenhout, K. Komorowska, P. Verheyen, G. Lepage, P. Absil, D. Hillerkuss, and L. Alloatti, Opt. Lett. 37, 4681 (2012).
    [CrossRef]
  5. Y. Li and A. W. Poon, in Conference on Lasers and Electro-optics: Science and Innovations (OSA, 2013).
  6. J. J. Ackert, A. S. Karar, D. J. Paez, P. E. Jessop, J. C. Cartledge, and A. P. Knights, Opt. Express 21, 19530 (2013).
    [CrossRef]
  7. R. Grote, K. Padmaraju, B. Souhan, J. Driscoll, K. Bergman, and R. Osgood, IEEE Photon. Technol. Lett. 25, 67 (2013).
  8. H. Chen and A. W. Poon, Appl. Phys. Lett. 96, 191106 (2010).
    [CrossRef]
  9. M. Casalino, G. Coppola, M. Gioffrè, M. Iodice, L. Moretti, I. Rendina, and L. Sirleto, J. Lightwave Technol. 28, 3266 (2010).
  10. A. Akbari, R. N. Tait, and P. Berini, Opt. Express 18, 8505 (2010).
    [CrossRef]
  11. A. Yariv, Electron. Lett. 36, 321 (2000).
    [CrossRef]
  12. M. J. Lee and W. Y. Choi, Opt. Express 18, 24189 (2010).
    [CrossRef]
  13. S. L. Miller, Phys. Rev. 99, 1234 (1955).
    [CrossRef]
  14. S. Fathpour, K. K. Tsia, and B. Jalali, IEEE J. Quantum Electron. 43, 1211 (2007).
    [CrossRef]
  15. R. Soref and B. Bennett, IEEE J. Quantum Electron. 23, 123 (1987).
    [CrossRef]
  16. S. M. Sze and K. K. Ng, Physics of Semiconductor Devices (Wiley, 2006).

2013 (2)

J. J. Ackert, A. S. Karar, D. J. Paez, P. E. Jessop, J. C. Cartledge, and A. P. Knights, Opt. Express 21, 19530 (2013).
[CrossRef]

R. Grote, K. Padmaraju, B. Souhan, J. Driscoll, K. Bergman, and R. Osgood, IEEE Photon. Technol. Lett. 25, 67 (2013).

2012 (1)

2010 (4)

2009 (2)

2008 (1)

2007 (1)

S. Fathpour, K. K. Tsia, and B. Jalali, IEEE J. Quantum Electron. 43, 1211 (2007).
[CrossRef]

2000 (1)

A. Yariv, Electron. Lett. 36, 321 (2000).
[CrossRef]

1987 (1)

R. Soref and B. Bennett, IEEE J. Quantum Electron. 23, 123 (1987).
[CrossRef]

1955 (1)

S. L. Miller, Phys. Rev. 99, 1234 (1955).
[CrossRef]

Absil, P.

Ackert, J. J.

Akbari, A.

Alloatti, L.

Baehr-Jones, T.

Bennett, B.

R. Soref and B. Bennett, IEEE J. Quantum Electron. 23, 123 (1987).
[CrossRef]

Bergman, K.

R. Grote, K. Padmaraju, B. Souhan, J. Driscoll, K. Bergman, and R. Osgood, IEEE Photon. Technol. Lett. 25, 67 (2013).

Berini, P.

Cartledge, J. C.

Casalino, M.

Chen, H.

H. Chen and A. W. Poon, Appl. Phys. Lett. 96, 191106 (2010).
[CrossRef]

H. Chen, X. Luo, and A. W. Poon, Appl. Phys. Lett. 95, 171111 (2009).
[CrossRef]

Choi, W. Y.

Coppola, G.

Driscoll, J.

R. Grote, K. Padmaraju, B. Souhan, J. Driscoll, K. Bergman, and R. Osgood, IEEE Photon. Technol. Lett. 25, 67 (2013).

Fathpour, S.

S. Fathpour, K. K. Tsia, and B. Jalali, IEEE J. Quantum Electron. 43, 1211 (2007).
[CrossRef]

Geis, M.

Gioffrè, M.

Grein, M.

Grote, R.

R. Grote, K. Padmaraju, B. Souhan, J. Driscoll, K. Bergman, and R. Osgood, IEEE Photon. Technol. Lett. 25, 67 (2013).

Hillerkuss, D.

Hochberg, M.

Iodice, M.

Jalali, B.

S. Fathpour, K. K. Tsia, and B. Jalali, IEEE J. Quantum Electron. 43, 1211 (2007).
[CrossRef]

Jessop, P. E.

Karar, A. S.

Knights, A. P.

Komorowska, K.

Korn, D.

Lee, M. J.

Lennon, D.

Lepage, G.

Li, Y.

Y. Li and A. W. Poon, in Conference on Lasers and Electro-optics: Science and Innovations (OSA, 2013).

Luo, X.

H. Chen, X. Luo, and A. W. Poon, Appl. Phys. Lett. 95, 171111 (2009).
[CrossRef]

Lyszczarz, T.

Miller, S. L.

S. L. Miller, Phys. Rev. 99, 1234 (1955).
[CrossRef]

Moretti, L.

Ng, K. K.

S. M. Sze and K. K. Ng, Physics of Semiconductor Devices (Wiley, 2006).

Osgood, R.

R. Grote, K. Padmaraju, B. Souhan, J. Driscoll, K. Bergman, and R. Osgood, IEEE Photon. Technol. Lett. 25, 67 (2013).

Padmaraju, K.

R. Grote, K. Padmaraju, B. Souhan, J. Driscoll, K. Bergman, and R. Osgood, IEEE Photon. Technol. Lett. 25, 67 (2013).

Paez, D. J.

Pantouvaki, M.

Poon, A. W.

H. Chen and A. W. Poon, Appl. Phys. Lett. 96, 191106 (2010).
[CrossRef]

H. Chen, X. Luo, and A. W. Poon, Appl. Phys. Lett. 95, 171111 (2009).
[CrossRef]

Y. Li and A. W. Poon, in Conference on Lasers and Electro-optics: Science and Innovations (OSA, 2013).

Rendina, I.

Scherer, A.

Sirleto, L.

Soref, R.

R. Soref and B. Bennett, IEEE J. Quantum Electron. 23, 123 (1987).
[CrossRef]

Souhan, B.

R. Grote, K. Padmaraju, B. Souhan, J. Driscoll, K. Bergman, and R. Osgood, IEEE Photon. Technol. Lett. 25, 67 (2013).

Spector, S.

Sze, S. M.

S. M. Sze and K. K. Ng, Physics of Semiconductor Devices (Wiley, 2006).

Tait, R. N.

Tsia, K. K.

S. Fathpour, K. K. Tsia, and B. Jalali, IEEE J. Quantum Electron. 43, 1211 (2007).
[CrossRef]

Van Campenhout, J.

Verheyen, P.

Yariv, A.

A. Yariv, Electron. Lett. 36, 321 (2000).
[CrossRef]

Yoon, J.

Yu, H.

Appl. Phys. Lett. (2)

H. Chen, X. Luo, and A. W. Poon, Appl. Phys. Lett. 95, 171111 (2009).
[CrossRef]

H. Chen and A. W. Poon, Appl. Phys. Lett. 96, 191106 (2010).
[CrossRef]

Electron. Lett. (1)

A. Yariv, Electron. Lett. 36, 321 (2000).
[CrossRef]

IEEE J. Quantum Electron. (2)

S. Fathpour, K. K. Tsia, and B. Jalali, IEEE J. Quantum Electron. 43, 1211 (2007).
[CrossRef]

R. Soref and B. Bennett, IEEE J. Quantum Electron. 23, 123 (1987).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

R. Grote, K. Padmaraju, B. Souhan, J. Driscoll, K. Bergman, and R. Osgood, IEEE Photon. Technol. Lett. 25, 67 (2013).

J. Lightwave Technol. (1)

Opt. Express (5)

Opt. Lett. (1)

Phys. Rev. (1)

S. L. Miller, Phys. Rev. 99, 1234 (1955).
[CrossRef]

Other (2)

S. M. Sze and K. K. Ng, Physics of Semiconductor Devices (Wiley, 2006).

Y. Li and A. W. Poon, in Conference on Lasers and Electro-optics: Science and Innovations (OSA, 2013).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a) Schematic of the energy band diagram of a Si PN-diode for sub-bandgap linear-absorption-based photodetection in avalanche mode. A: DSA and SSA, B: avalanche. (b) Top-view schematic of the PN-diode-integrated Si microring resonator. Zoom-in: cross-sectional view schematic of the Si waveguide, with an overlaid simulated optical mode-field intensity profile.

Fig. 2.
Fig. 2.

(a) SEM of a fabricated device. (b) Measured optical transmission spectra upon 3 V (dots) and 7.9 V (red line). Fitted optical spectrum for 3 V (blue line). (c) Measured photocurrent spectra upon 3 V and 7.9 V. Fitted photocurrent spectrum for 3 V (blue line). (d) Measured IV curves upon 0 μW (dark), 100 μW (red line), and 500 μW (blue line) estimated optical input at 1545.8 nm. Zoom-in: IV curves from 7.9 to 8.5 V.

Fig. 3.
Fig. 3.

(a) Measured photocurrents versus Pbus upon various voltages. Inset: photocurrents upon 1–5 V. (b) Responsivities and gains upon various voltages. Black line: Miller’s formula fit. (c) Measured photocurrents versus Pres. Black line: a second-order polynomial fit. (d) Simulated electric-field amplitude distribution of the PN diode upon 8 V.

Fig. 4.
Fig. 4.

(a) Measured photoresponses upon various voltages. (b) Measured 3 dB bandwidths versus avalanche gain. (c) Measured (black) and fitted (red) S11 (c) amplitude and (d) phase upon 3 V. Inset: The circuit model of the PD. Co, Ro, capacitance and resistance of the SiO2 substrate beneath the Si layer; Cj, Rj, capacitance and resistance of the junction. Cpad, pad capacitance.

Fig. 5.
Fig. 5.

Measured eye diagrams upon 8 V at data rates of (a) 10Gbit/s and (b) 15Gbit/s.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

I=RPres=R|κtAeiφ1|2Pbus,
M=(1(V/Vb)n)1,
I=ηqEphαlαtot(1eαtotLd)γPres+ηqβ2EphLdAeffγ2Pres2,
f3dB2=(2πτc)2+(τs/0.45)2+(2πRC)2.

Metrics