Abstract

We propose a single-shot incoherent holographic imaging technique that adopts self-interference incoherent digital holography (SIDH) with slight tilt of the plane mirror in the optical configuration. The limited temporal coherence length of the illumination leads the guide-star hologram of the proposed system to have a Gaussian envelope of elliptical ring shape. The observation shows that the reconstruction by cross correlation with the guide-star hologram achieves better quality than the usual propagation methods. Experimentally, we verify that the hologram and 3D reconstruction can be implemented incoherently with the proposed single-shot off-axis SIDH.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Gabor, Nature 161, 777 (1948).
    [CrossRef]
  2. A. W. Lohmann, J. Opt. Soc. Am. 55, 1555 (1965).
    [CrossRef]
  3. G. Cochran, J. Opt. Soc. Am. A 56, 1513 (1966).
    [CrossRef]
  4. F. Dubois, L. Joannes, and J.-C. Legros, Appl. Opt. 38, 7085 (1999).
    [CrossRef]
  5. T.-C. Poon, Adv. Imaging Electron Phys. 126, 329 (2003).
    [CrossRef]
  6. Y. Li, D. Abookasis, and J. Rosen, Appl. Opt. 40, 2864 (2001).
    [CrossRef]
  7. J. Rosen and G. Brooker, Nat. Photonics 2, 190 (2008).
    [CrossRef]
  8. G. Pedrini, H. Li, A. Faridian, and W. Osten, Opt. Lett. 37, 713 (2012).
    [CrossRef]
  9. M. K. Kim, Appl. Opt. 52, A117 (2013).
    [CrossRef]
  10. M. K. Kim, Opt. Express 21, 9636 (2013).
    [CrossRef]
  11. T. Tahara, Y. Ito, Y. Lee, P. Xia, J. Inoue, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, Opt. Lett. 38, 2789 (2013).
    [CrossRef]
  12. D. Abdelsalam, B. Yao, P. Gao, J. Min, and R. Guo, Appl. Opt. 51, 4891 (2012).
    [CrossRef]
  13. M. A. Araiza-Esquivel, L. Martínez-León, B. Javidi, P. Andrés, J. Lancis, and E. Tajahuerce, Appl. Opt. 50, B96 (2011).
    [CrossRef]
  14. T. Nomura and M. Imbe, Opt. Lett. 35, 2281 (2010).
    [CrossRef]
  15. R. Kelner, J. Rosen, and G. Brooker, Opt. Express 21, 20131 (2013).
    [CrossRef]
  16. J. W. Goodman, Statistical Optics (Wiley, 1985).

2013

2012

2011

2010

2008

J. Rosen and G. Brooker, Nat. Photonics 2, 190 (2008).
[CrossRef]

2003

T.-C. Poon, Adv. Imaging Electron Phys. 126, 329 (2003).
[CrossRef]

2001

1999

1966

G. Cochran, J. Opt. Soc. Am. A 56, 1513 (1966).
[CrossRef]

1965

1948

D. Gabor, Nature 161, 777 (1948).
[CrossRef]

Abdelsalam, D.

Abookasis, D.

Andrés, P.

Araiza-Esquivel, M. A.

Awatsuji, Y.

Brooker, G.

Cochran, G.

G. Cochran, J. Opt. Soc. Am. A 56, 1513 (1966).
[CrossRef]

Dubois, F.

Faridian, A.

Gabor, D.

D. Gabor, Nature 161, 777 (1948).
[CrossRef]

Gao, P.

Goodman, J. W.

J. W. Goodman, Statistical Optics (Wiley, 1985).

Guo, R.

Imbe, M.

Inoue, J.

Ito, Y.

Javidi, B.

Joannes, L.

Kelner, R.

Kim, M. K.

Kubota, T.

Lancis, J.

Lee, Y.

Legros, J.-C.

Li, H.

Li, Y.

Lohmann, A. W.

Martínez-León, L.

Matoba, O.

Min, J.

Nishio, K.

Nomura, T.

Osten, W.

Pedrini, G.

Poon, T.-C.

T.-C. Poon, Adv. Imaging Electron Phys. 126, 329 (2003).
[CrossRef]

Rosen, J.

Tahara, T.

Tajahuerce, E.

Ura, S.

Xia, P.

Yao, B.

Supplementary Material (1)

» Media 1: AVI (2068 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Optical setup of the proposed off-axis SIDH system. BS, beam splitter; M1, plane mirror with tilt; M2, curved mirror.

Fig. 2.
Fig. 2.

(a) Interferogram (700×700) obtained by the point source object and (b) its angular spectrum. The brighter circle is a filter used for extracting +1 order. (c) Amplitude and (d) phase of the retrieved complex hologram.

Fig. 3.
Fig. 3.

(a) Interferogram (700×700) obtained from the extended object illuminated by LED (wavelength: 625 nm) and (b) its angular spectrum. The brighter rectangle is a filter used for extracting +1 order. (c) Amplitude and (d) phase of the retrieved complex hologram.

Fig. 4.
Fig. 4.

Reconstruction results from the complex hologram shown in Fig. 3 by using various reconstruction methods: (a) angular spectrum, (b) Fresnel propagation, and (c) cross correlation with the guide-star hologram. The synthetic guide-star hologram was used for (c).

Fig. 5.
Fig. 5.

PSF of the reconstruction computed from the complex hologram shown in Fig. 2 by using various reconstruction methods: (a) angular spectrum, (b) Fresnel propagation, and (c) cross correlation with the guide-star hologram. The images are 111×111 area cropped from the whole FOV. (d) and (e) show the normalized intensity profile along axes 1 and 2, respectively. [Yellow, intensity profile of (a); green, that of (b); red, that of (c)]. The direction and range of axes 1 and 2 are presented as yellow lines in (a), (b), and (c). (f) compares the y-cut intensity profiles of Fig. 4(a) (yellow), (b) (green), and (c) (red). Each graph was obtained by averaging the y-cut intensities inside the range from x=180 to 274. (g) illustrates the boundaries of the range as two yellow lines overlaid on Fig. 4(a).

Fig. 6.
Fig. 6.

Experimental results for the object composed of four LEDs located at different distances (three LEDs at d0=120mm; one LED at d0=130mm). (a) and (b) are reconstruction results obtained from the complex hologram retrieved using the proposed off-axis SIDH. (a) Best focus at three LEDs. (b) Best focus at the fourth LED. The continuous focus change between (a) and (b) is provided as a movie file (Media 1). (c) and (d) are directly recorded images of the object. For (c), the focus is at three LEDs while (d) is at the fourth LED. In (c) and (d), the d0 value (distance between the object and the input aperture) for each LED is provided to show the positional relation more clearly.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

u(r)=A(ro)|Q(r,ro)+L(r;n)|2,
U(r)=roA(ro)(2+P(r)[QL*+Q*L])dro,
P(r)=exp[γ·Δ(r)2].
I(r)=hrhg*,

Metrics