Abstract

In high-frequency photoacoustic imaging with uniform illumination, homogeneous photoabsorbing structures may be invisible because of their large size or limited-view issues. Here we show that, by exploiting dynamic speckle illumination, it is possible to reveal features that are normally invisible with a photoacoustic system comprised of a 20 MHz linear ultrasound array. We demonstrate imaging of a 5mm absorbing cylinder and a 30 μm black thread arranged in a complex shape. The hidden structures are directly retrieved from photoacoustic images recorded for different random speckle illuminations of the phantoms by assessing the variation in the value of each pixel over the illumination patterns.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. P. K. Shung and G. A. Thieme, Ultrasonic Scattering in Biological Tissues (CRC Press, 1993).
  2. Z. Guo, L. Li, and L. V. Wang, Med. Phys. 36, 4084 (2009).
    [CrossRef]
  3. P. Beard, Interface Focus 1, 602 (2011).
    [CrossRef]
  4. C. Ventalon and J. Mertz, Opt. Express 14, 7198 (2006).
    [CrossRef]
  5. E. Mudry, K. Belkebir, J. Girard, J. Savatier, E. Le Moal, C. Nicoletti, M. Allain, and A. Sentenac, Nat. Photonics 6, 312 (2012).
    [CrossRef]
  6. V. Ntziachristos, Nat. Methods 7, 603 (2010).
    [CrossRef]
  7. J. W. Goodman, J. Opt. Soc. Am. 66, 1145 (1976).
    [CrossRef]
  8. Y. Xu, L. V. Wang, G. Ambartsoumian, and P. Kuchment, Med. Phys. 31, 724 (2004).
    [CrossRef]
  9. G. Jasso, Am. Sociol. Rev. 44, 867 (1979).
    [CrossRef]
  10. G. J. Diebold and T. Sun, Acta Acust. United Acust. 80, 339 (1994).
  11. T. Chaigne, O. Katz, A. C. Boccara, M. Fink, E. Bossy, and S. Gigan, “Controlling light in scattering media noninvasively using the photo-acoustic transmission-matrix,” arXiv:1305.6246 [physics.optics] (2013).
  12. R. Pierrat, J.-J. Greffet, R. Carminati, and R. Elaloufi, J. Opt. Soc. Am. A 22, 2329 (2005).
    [CrossRef]
  13. M. Omar, J. Gateau, and V. Ntziachristos, Opt. Lett. 38, 2472 (2013).
    [CrossRef]
  14. M. Gross, P. Goy, B. C. Forget, M. Atlan, F. Ramaz, A. C. Boccara, and A. K. Dunn, Opt. Lett. 30, 1357 (2005).
    [CrossRef]

2013 (1)

2012 (1)

E. Mudry, K. Belkebir, J. Girard, J. Savatier, E. Le Moal, C. Nicoletti, M. Allain, and A. Sentenac, Nat. Photonics 6, 312 (2012).
[CrossRef]

2011 (1)

P. Beard, Interface Focus 1, 602 (2011).
[CrossRef]

2010 (1)

V. Ntziachristos, Nat. Methods 7, 603 (2010).
[CrossRef]

2009 (1)

Z. Guo, L. Li, and L. V. Wang, Med. Phys. 36, 4084 (2009).
[CrossRef]

2006 (1)

2005 (2)

2004 (1)

Y. Xu, L. V. Wang, G. Ambartsoumian, and P. Kuchment, Med. Phys. 31, 724 (2004).
[CrossRef]

1994 (1)

G. J. Diebold and T. Sun, Acta Acust. United Acust. 80, 339 (1994).

1979 (1)

G. Jasso, Am. Sociol. Rev. 44, 867 (1979).
[CrossRef]

1976 (1)

Allain, M.

E. Mudry, K. Belkebir, J. Girard, J. Savatier, E. Le Moal, C. Nicoletti, M. Allain, and A. Sentenac, Nat. Photonics 6, 312 (2012).
[CrossRef]

Ambartsoumian, G.

Y. Xu, L. V. Wang, G. Ambartsoumian, and P. Kuchment, Med. Phys. 31, 724 (2004).
[CrossRef]

Atlan, M.

Beard, P.

P. Beard, Interface Focus 1, 602 (2011).
[CrossRef]

Belkebir, K.

E. Mudry, K. Belkebir, J. Girard, J. Savatier, E. Le Moal, C. Nicoletti, M. Allain, and A. Sentenac, Nat. Photonics 6, 312 (2012).
[CrossRef]

Boccara, A. C.

M. Gross, P. Goy, B. C. Forget, M. Atlan, F. Ramaz, A. C. Boccara, and A. K. Dunn, Opt. Lett. 30, 1357 (2005).
[CrossRef]

T. Chaigne, O. Katz, A. C. Boccara, M. Fink, E. Bossy, and S. Gigan, “Controlling light in scattering media noninvasively using the photo-acoustic transmission-matrix,” arXiv:1305.6246 [physics.optics] (2013).

Bossy, E.

T. Chaigne, O. Katz, A. C. Boccara, M. Fink, E. Bossy, and S. Gigan, “Controlling light in scattering media noninvasively using the photo-acoustic transmission-matrix,” arXiv:1305.6246 [physics.optics] (2013).

Carminati, R.

Chaigne, T.

T. Chaigne, O. Katz, A. C. Boccara, M. Fink, E. Bossy, and S. Gigan, “Controlling light in scattering media noninvasively using the photo-acoustic transmission-matrix,” arXiv:1305.6246 [physics.optics] (2013).

Diebold, G. J.

G. J. Diebold and T. Sun, Acta Acust. United Acust. 80, 339 (1994).

Dunn, A. K.

Elaloufi, R.

Fink, M.

T. Chaigne, O. Katz, A. C. Boccara, M. Fink, E. Bossy, and S. Gigan, “Controlling light in scattering media noninvasively using the photo-acoustic transmission-matrix,” arXiv:1305.6246 [physics.optics] (2013).

Forget, B. C.

Gateau, J.

Gigan, S.

T. Chaigne, O. Katz, A. C. Boccara, M. Fink, E. Bossy, and S. Gigan, “Controlling light in scattering media noninvasively using the photo-acoustic transmission-matrix,” arXiv:1305.6246 [physics.optics] (2013).

Girard, J.

E. Mudry, K. Belkebir, J. Girard, J. Savatier, E. Le Moal, C. Nicoletti, M. Allain, and A. Sentenac, Nat. Photonics 6, 312 (2012).
[CrossRef]

Goodman, J. W.

Goy, P.

Greffet, J.-J.

Gross, M.

Guo, Z.

Z. Guo, L. Li, and L. V. Wang, Med. Phys. 36, 4084 (2009).
[CrossRef]

Jasso, G.

G. Jasso, Am. Sociol. Rev. 44, 867 (1979).
[CrossRef]

Katz, O.

T. Chaigne, O. Katz, A. C. Boccara, M. Fink, E. Bossy, and S. Gigan, “Controlling light in scattering media noninvasively using the photo-acoustic transmission-matrix,” arXiv:1305.6246 [physics.optics] (2013).

Kuchment, P.

Y. Xu, L. V. Wang, G. Ambartsoumian, and P. Kuchment, Med. Phys. 31, 724 (2004).
[CrossRef]

Le Moal, E.

E. Mudry, K. Belkebir, J. Girard, J. Savatier, E. Le Moal, C. Nicoletti, M. Allain, and A. Sentenac, Nat. Photonics 6, 312 (2012).
[CrossRef]

Li, L.

Z. Guo, L. Li, and L. V. Wang, Med. Phys. 36, 4084 (2009).
[CrossRef]

Mertz, J.

Mudry, E.

E. Mudry, K. Belkebir, J. Girard, J. Savatier, E. Le Moal, C. Nicoletti, M. Allain, and A. Sentenac, Nat. Photonics 6, 312 (2012).
[CrossRef]

Nicoletti, C.

E. Mudry, K. Belkebir, J. Girard, J. Savatier, E. Le Moal, C. Nicoletti, M. Allain, and A. Sentenac, Nat. Photonics 6, 312 (2012).
[CrossRef]

Ntziachristos, V.

Omar, M.

Pierrat, R.

Ramaz, F.

Savatier, J.

E. Mudry, K. Belkebir, J. Girard, J. Savatier, E. Le Moal, C. Nicoletti, M. Allain, and A. Sentenac, Nat. Photonics 6, 312 (2012).
[CrossRef]

Sentenac, A.

E. Mudry, K. Belkebir, J. Girard, J. Savatier, E. Le Moal, C. Nicoletti, M. Allain, and A. Sentenac, Nat. Photonics 6, 312 (2012).
[CrossRef]

Shung, K. P. K.

K. P. K. Shung and G. A. Thieme, Ultrasonic Scattering in Biological Tissues (CRC Press, 1993).

Sun, T.

G. J. Diebold and T. Sun, Acta Acust. United Acust. 80, 339 (1994).

Thieme, G. A.

K. P. K. Shung and G. A. Thieme, Ultrasonic Scattering in Biological Tissues (CRC Press, 1993).

Ventalon, C.

Wang, L. V.

Z. Guo, L. Li, and L. V. Wang, Med. Phys. 36, 4084 (2009).
[CrossRef]

Y. Xu, L. V. Wang, G. Ambartsoumian, and P. Kuchment, Med. Phys. 31, 724 (2004).
[CrossRef]

Xu, Y.

Y. Xu, L. V. Wang, G. Ambartsoumian, and P. Kuchment, Med. Phys. 31, 724 (2004).
[CrossRef]

Acta Acust. United Acust. (1)

G. J. Diebold and T. Sun, Acta Acust. United Acust. 80, 339 (1994).

Am. Sociol. Rev. (1)

G. Jasso, Am. Sociol. Rev. 44, 867 (1979).
[CrossRef]

Interface Focus (1)

P. Beard, Interface Focus 1, 602 (2011).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

Med. Phys. (2)

Y. Xu, L. V. Wang, G. Ambartsoumian, and P. Kuchment, Med. Phys. 31, 724 (2004).
[CrossRef]

Z. Guo, L. Li, and L. V. Wang, Med. Phys. 36, 4084 (2009).
[CrossRef]

Nat. Methods (1)

V. Ntziachristos, Nat. Methods 7, 603 (2010).
[CrossRef]

Nat. Photonics (1)

E. Mudry, K. Belkebir, J. Girard, J. Savatier, E. Le Moal, C. Nicoletti, M. Allain, and A. Sentenac, Nat. Photonics 6, 312 (2012).
[CrossRef]

Opt. Express (1)

Opt. Lett. (2)

Other (2)

T. Chaigne, O. Katz, A. C. Boccara, M. Fink, E. Bossy, and S. Gigan, “Controlling light in scattering media noninvasively using the photo-acoustic transmission-matrix,” arXiv:1305.6246 [physics.optics] (2013).

K. P. K. Shung and G. A. Thieme, Ultrasonic Scattering in Biological Tissues (CRC Press, 1993).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

(a) Schematic of the experimental setup. The laser input beam (diameter 6mm) impinged on the diffuser surface, which was placed at a distance L of the imaging plane. A coordinate system is introduced for the imaging plane. Its origin is the middle point of the array. (b) A typical optical speckle pattern recorded with the camera in the xy plane (transverse grain size of 6.3μm±0.8μm).

Fig. 2.
Fig. 2.

Images obtained with Phantom 1. (a) Photograph of the 5mm ink inclusion. A metric ruler was placed on the top for size reference. (b)–(e) Photoacoustic images from illumination with speckle patterns featuring a transverse grain size of Dspeckle=2.6μm±0.6μm. (b) Mean image over 50 speckle patterns, mimicking a uniform illumination, (c) reconstruction from a single speckle-illumination pattern, (d) GMD2 image, and (e) GDM50 image. (f) Same as (e) but for Dspeckle=6.3μm±0.8μm. The superimposed empty and full arrows indicate surfaces, respectively, parallel and perpendicular to the length axis of the array. GMD images enable reconstruction of a large absorbing structure with a high-frequency photoacoustic system without artifacts.

Fig. 3.
Fig. 3.

Images obtained with Phantom 2. (a) Photograph of the 30μm knotted thread. (b)–(e) Photoacoustic images from illumination with speckle patterns featuring a transverse grain size Dspeckle=6.3μm±0.8μm. (b) Mean image over 50 speckle patterns, (c) reconstruction from a single speckle-illumination pattern, (d) GMD2 image from the illumination pattern in (c) and a second one, and (e) GDM50 image. (b) and (c) were threshold to the maximum value of (d). (f) Same as (e) but for Dspeckle=2.6μm±0.6μm. The superimposed empty and full arrows point out parts of the thread, respectively, mostly parallel and perpendicular to the length axis of the array. All the orientations of the thread can be retrieved in the GMD images. (g) Averaged RMD values—computed in the area delimited by the superimposed corners in (b)—as a function of the transverse speckle grain size. Vertical error bar, standard deviation; horizontal error bar, estimated precision on Dspeckle with the camera measurements.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

GMDN=i=1N1j=i+1N|pipj|N(N1)/2.
RMD=GMD502·|μ|.

Metrics