Abstract

We report the first, to the best of our knowledge, femtosecond-laser-pumped optical parametric oscillator (OPO) based on the newly developed nonlinear crystal, CdSiP2. The OPO was synchronously pumped by a mode-locked Yb:KYW/Yb:fiber master-oscillator power amplifier, providing 1.053 μm pump pulses with durations of 130 fs at a repetition rate of 100 MHz. The 0.5-mm-thick CdSiP2 crystal was cut for a type-I noncritical interaction, providing a broad phase-matching bandwidth and ensuring excellent temporal overlap among the pump, signal, and idler pulses. The OPO generated signal pulses with a spectral coverage over 1260–1310 nm and mid-infrared idler pulses with a broad spectral coverage at 5.8–6.6 μm (6.2 THz). With a 2% output coupler (OC), the threshold pump power was 600 mW. At the maximum pump power of 1.6 W, 0.55 W was absorbed due to two-photon absorption and residual linear absorption in the CdSiP2 crystal, 0.75 W was transmitted, and 53 mW signal power was extracted through the OC. We estimate that the generated idler power was 24 mW.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. P. Lamour, L. Kornaszewski, J. H. Sun, and D. T. Reid, Opt. Express 17, 14229 (2009).
    [CrossRef]
  2. F. Adler, K. C. Cossel, M. J. Thorpe, I. Hartl, M. E. Fermann, and J. Ye, Opt. Lett. 34, 1330 (2009).
    [CrossRef]
  3. S. Marzenell, R. Beigang, and R. Wallenstein, Appl. Phys. B 69, 423 (1999).
    [CrossRef]
  4. M. A. Watson, M. V. O’Connor, D. P. Shepherd, and D. C. Hanna, Opt. Lett. 28, 1957 (2003).
    [CrossRef]
  5. N. Leindecker, A. Marandi, R. L. Byer, K. L. Vodopyanov, J. Jiang, I. Hartl, M. Fermann, and P. G. Schunemann, Opt. Express 20, 7046 (2012).
    [CrossRef]
  6. J.-B. Dherbecourt, A. Godard, M. Raybaut, J.-M. Melkonian, and M. Lefebvre, Opt. Lett. 35, 2197 (2010).
    [CrossRef]
  7. K. T. Zawilski, P. G. Schunemann, T. C. Pollak, D. E. Zelmon, N. C. Fernelius, and F. K. Hopkins, J. Cryst. Growth 312, 1127 (2010).
    [CrossRef]
  8. V. Petrov, Opt. Mater. 34, 536 (2012).
    [CrossRef]
  9. V. Kemlin, P. Brand, B. Boulanger, P. Segonds, P. G. Schunemann, K. T. Zawilski, B. Ménaert, and J. Debray, Opt. Lett. 36, 1800 (2011).
    [CrossRef]
  10. V. Petrov, G. Marchev, P. G. Schunemann, A. Tyazhev, K. T. Zawilski, and T. M. Pollak, Opt. Lett. 35, 1230 (2010).
    [CrossRef]
  11. A. Peremans, D. Lis, F. Cecchet, P. G. Schunemann, K. T. Zawilski, and V. Petrov, Opt. Lett. 34, 3053 (2009).
    [CrossRef]
  12. O. Chalus, P. G. Schunemann, K. T. Zawilski, J. Biegert, and M. Ebrahim-Zadeh, Opt. Lett. 35, 4142 (2010).
    [CrossRef]
  13. S. Chaitanya Kumar, A. Agnesi, P. Dallocchio, F. Pirzio, G. Reali, K. T. Zawilski, P. G. Schunemann, and M. Ebrahim-Zadeh, Opt. Lett. 36, 3236 (2011).
    [CrossRef]
  14. S. Chaitanya Kumar, M. Jelínek, M. Baudisch, K. T. Zawilski, P. G. Schunemann, V. Kubeček, J. Biegert, and M. Ebrahim-Zadeh, Opt. Express 20, 15703 (2012).
    [CrossRef]
  15. Z. Zhang, J. Sun, T. Gardiner, and D. T. Reid, Opt. Express 19, 17127 (2011).
    [CrossRef]
  16. T. W. Neely, T. A. Johnson, and S. A. Diddams, Opt. Lett. 36, 4020 (2011).
    [CrossRef]
  17. Y. Pang, B. I. Minkov, V. Yanovsky, and F. Wise, Opt. Lett. 18, 1168 (1993).
    [CrossRef]
  18. K. Tamura, E. P. Ippen, H. A. Haus, and L. E. Nelson, Opt. Lett. 18, 1080 (1993).
    [CrossRef]
  19. K. A. Tillman, R. R. J. Maier, D. T. Reid, and E. D. McNaghten, Appl. Phys. Lett. 85, 3366 (2004).
    [CrossRef]
  20. F. Adler, P. Masłowski, A. Foltynowicz, K. C. Cossel, T. C. Briles, I. Hartl, and J. Ye, Opt. Express 18, 21861 (2010).
    [CrossRef]
  21. Z. Zhang, T. Gardiner, and D. T. Reid, Opt. Lett. 38, 3148 (2013).
    [CrossRef]

2013 (1)

2012 (3)

2011 (4)

2010 (5)

2009 (3)

2004 (1)

K. A. Tillman, R. R. J. Maier, D. T. Reid, and E. D. McNaghten, Appl. Phys. Lett. 85, 3366 (2004).
[CrossRef]

2003 (1)

1999 (1)

S. Marzenell, R. Beigang, and R. Wallenstein, Appl. Phys. B 69, 423 (1999).
[CrossRef]

1993 (2)

Adler, F.

Agnesi, A.

Baudisch, M.

Beigang, R.

S. Marzenell, R. Beigang, and R. Wallenstein, Appl. Phys. B 69, 423 (1999).
[CrossRef]

Biegert, J.

Boulanger, B.

Brand, P.

Briles, T. C.

Byer, R. L.

Cecchet, F.

Chaitanya Kumar, S.

Chalus, O.

Cossel, K. C.

Dallocchio, P.

Debray, J.

Dherbecourt, J.-B.

Diddams, S. A.

Ebrahim-Zadeh, M.

Fermann, M.

Fermann, M. E.

Fernelius, N. C.

K. T. Zawilski, P. G. Schunemann, T. C. Pollak, D. E. Zelmon, N. C. Fernelius, and F. K. Hopkins, J. Cryst. Growth 312, 1127 (2010).
[CrossRef]

Foltynowicz, A.

Gardiner, T.

Godard, A.

Hanna, D. C.

Hartl, I.

Haus, H. A.

Hopkins, F. K.

K. T. Zawilski, P. G. Schunemann, T. C. Pollak, D. E. Zelmon, N. C. Fernelius, and F. K. Hopkins, J. Cryst. Growth 312, 1127 (2010).
[CrossRef]

Ippen, E. P.

Jelínek, M.

Jiang, J.

Johnson, T. A.

Kemlin, V.

Kornaszewski, L.

Kubecek, V.

Lamour, T. P.

Lefebvre, M.

Leindecker, N.

Lis, D.

Maier, R. R. J.

K. A. Tillman, R. R. J. Maier, D. T. Reid, and E. D. McNaghten, Appl. Phys. Lett. 85, 3366 (2004).
[CrossRef]

Marandi, A.

Marchev, G.

Marzenell, S.

S. Marzenell, R. Beigang, and R. Wallenstein, Appl. Phys. B 69, 423 (1999).
[CrossRef]

Maslowski, P.

McNaghten, E. D.

K. A. Tillman, R. R. J. Maier, D. T. Reid, and E. D. McNaghten, Appl. Phys. Lett. 85, 3366 (2004).
[CrossRef]

Melkonian, J.-M.

Ménaert, B.

Minkov, B. I.

Neely, T. W.

Nelson, L. E.

O’Connor, M. V.

Pang, Y.

Peremans, A.

Petrov, V.

Pirzio, F.

Pollak, T. C.

K. T. Zawilski, P. G. Schunemann, T. C. Pollak, D. E. Zelmon, N. C. Fernelius, and F. K. Hopkins, J. Cryst. Growth 312, 1127 (2010).
[CrossRef]

Pollak, T. M.

Raybaut, M.

Reali, G.

Reid, D. T.

Schunemann, P. G.

Segonds, P.

Shepherd, D. P.

Sun, J.

Sun, J. H.

Tamura, K.

Thorpe, M. J.

Tillman, K. A.

K. A. Tillman, R. R. J. Maier, D. T. Reid, and E. D. McNaghten, Appl. Phys. Lett. 85, 3366 (2004).
[CrossRef]

Tyazhev, A.

Vodopyanov, K. L.

Wallenstein, R.

S. Marzenell, R. Beigang, and R. Wallenstein, Appl. Phys. B 69, 423 (1999).
[CrossRef]

Watson, M. A.

Wise, F.

Yanovsky, V.

Ye, J.

Zawilski, K. T.

Zelmon, D. E.

K. T. Zawilski, P. G. Schunemann, T. C. Pollak, D. E. Zelmon, N. C. Fernelius, and F. K. Hopkins, J. Cryst. Growth 312, 1127 (2010).
[CrossRef]

Zhang, Z.

Appl. Phys. B (1)

S. Marzenell, R. Beigang, and R. Wallenstein, Appl. Phys. B 69, 423 (1999).
[CrossRef]

Appl. Phys. Lett. (1)

K. A. Tillman, R. R. J. Maier, D. T. Reid, and E. D. McNaghten, Appl. Phys. Lett. 85, 3366 (2004).
[CrossRef]

J. Cryst. Growth (1)

K. T. Zawilski, P. G. Schunemann, T. C. Pollak, D. E. Zelmon, N. C. Fernelius, and F. K. Hopkins, J. Cryst. Growth 312, 1127 (2010).
[CrossRef]

Opt. Express (5)

Opt. Lett. (12)

Opt. Mater. (1)

V. Petrov, Opt. Mater. 34, 536 (2012).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

OPO layout. HWP, half-wave plate; M, mirror; L, lens; OC, output coupler.

Fig. 2.
Fig. 2.

Noncritical (θ=90°) type-I ((eo+o) phase-matching efficiency maps for a 0.5-mm-thick CSP crystal at pump wavelengths from 1040 to 1070 nm.

Fig. 3.
Fig. 3.

Transmission through the 0.5-mm-thick CSP crystal as a function of intensity for the e-polarized 130 fs pump pulses.

Fig. 4.
Fig. 4.

(a) Measured signal output power from the OC, residual pump power when the OPO was oscillating, and residual pump power when the OPO was not oscillating versus incident pump power. (b) Measured signal output power from the OC versus the absorbed pump power due to OPO oscillation.

Fig. 5.
Fig. 5.

(a) Signal spectrum at full pump power. (b) Spectrum of the incident pump (dashed line) and the residual pump (solid line).

Fig. 6.
Fig. 6.

Solid line: idler spectrum measured by an FTIR spectrometer. Dashed line: simulated transmission spectrum through water vapor, based on the HITRAN database, with a water concentration of 1% at one atmospheric pressure, a path length of 1.4 m, and a resolution (matching experiment) of 2.5cm1 (10nm).

Metrics