Abstract

In this Letter, we demonstrate the experimental mapping of the longitudinal magnetic and electric optical fields with a standard scanning microscope that involves a high-numerical-aperture far-field objective. The imaging concept relies upon the insertion of an azimuthal or a radial polarizer within the detection path of the microscope that acts as an optical electromagnetic filter aimed at transmitting selectively to the detector the signal from the magnetic or electric longitudinal fields present in the detection volume, respectively. The resulting system is thus versatile, noninvasive, and of high resolution, and shows high detection efficiencies. Magnetic optical properties of physical and biological micro- and nano-structures may thus be revealed with a far-field microscope.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Fontana and R. Pantell, J. Appl. Phys. 54, 4285 (1983).
    [CrossRef]
  2. V. Niziev and A. Nesterov, J. Phys. D 32, 1455 (1999).
    [CrossRef]
  3. T. Grosjean and D. Courjon, Opt. Lett. 32, 976 (2007).
    [CrossRef]
  4. S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, Opt. Commun. 179, 1 (2000).
    [CrossRef]
  5. L. Novotny, M. Beversluis, K. Youngworth, and T. Brown, Phys. Rev. Lett. 86, 5251 (2001).
    [CrossRef]
  6. A. Bouhelier, M. Beversluis, A. Hartschuh, and L. Novotny, Phys. Rev. Lett. 90, 013903 (2003).
    [CrossRef]
  7. R. M. Stöckle, Y. D. Suh, V. Deckert, and R. Zenobi, Chem. Phys. Lett. 318, 131 (2000).
    [CrossRef]
  8. P. Bharadwaj, B. Deutsch, and L. Novotny, Adv. Opt. Photon. 1, 438 (2009).
    [CrossRef]
  9. K. Youngworth and T. Brown, Opt. Express 7, 77 (2000).
    [CrossRef]
  10. P. Banzer, U. Peschel, S. Quabis, and G. Leuchs, Opt. Express 18, 10905 (2010).
    [CrossRef]
  11. T. Grosjean and I. Gauthier, Opt. Commun. 294, 333 (2013).
    [CrossRef]
  12. A. Taflove and S. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed. (Artech House, 2005).
  13. M. Born and E. Wolf, Principle of Optics (Pergamon, 1980).
  14. T. Grosjean and D. Courjon, Opt. Express 14, 2203 (2006).
    [CrossRef]
  15. N. Hayazawa, Y. Saito, and S. Kawata, Appl. Phys. Lett. 85, 6239 (2004).
    [CrossRef]
  16. K. Lee, H. Kihm, J. Kihm, W. Choi, H. Kim, C. Ropers, D. Park, Y. Yoon, S. Choi, D. Woo, J. Kim, B. Lee, Q. Parka, C. Lienau, and D. Kim, Nat. Photonics 1, 53 (2007).
    [CrossRef]
  17. M. Burresi, D. van Oosten, T. Kampfrath, H. Schoenmaker, R. Heideman, A. Leinse, and L. Kuipers, Science 326, 550 (2009).
    [CrossRef]
  18. T. Grosjean, I. A. Ibrahim, M. A. Suarez, G. W. Burr, M. Mivelle, and D. Charraut, Opt. Express 18, 5809 (2010).
    [CrossRef]
  19. T. Wilson, ed., Confocal Microscopy (Academic, 1990).
  20. B. Richards and E. Wolf, Proc. R. Soc. London, Ser. A 253, 358 (1959).
    [CrossRef]
  21. J. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1968).
  22. T. Grosjean, A. Sabac, and D. Courjon, Opt. Commun. 252, 12 (2005).
    [CrossRef]

2013

T. Grosjean and I. Gauthier, Opt. Commun. 294, 333 (2013).
[CrossRef]

2010

2009

M. Burresi, D. van Oosten, T. Kampfrath, H. Schoenmaker, R. Heideman, A. Leinse, and L. Kuipers, Science 326, 550 (2009).
[CrossRef]

P. Bharadwaj, B. Deutsch, and L. Novotny, Adv. Opt. Photon. 1, 438 (2009).
[CrossRef]

2007

T. Grosjean and D. Courjon, Opt. Lett. 32, 976 (2007).
[CrossRef]

K. Lee, H. Kihm, J. Kihm, W. Choi, H. Kim, C. Ropers, D. Park, Y. Yoon, S. Choi, D. Woo, J. Kim, B. Lee, Q. Parka, C. Lienau, and D. Kim, Nat. Photonics 1, 53 (2007).
[CrossRef]

2006

2005

T. Grosjean, A. Sabac, and D. Courjon, Opt. Commun. 252, 12 (2005).
[CrossRef]

2004

N. Hayazawa, Y. Saito, and S. Kawata, Appl. Phys. Lett. 85, 6239 (2004).
[CrossRef]

2003

A. Bouhelier, M. Beversluis, A. Hartschuh, and L. Novotny, Phys. Rev. Lett. 90, 013903 (2003).
[CrossRef]

2001

L. Novotny, M. Beversluis, K. Youngworth, and T. Brown, Phys. Rev. Lett. 86, 5251 (2001).
[CrossRef]

2000

R. M. Stöckle, Y. D. Suh, V. Deckert, and R. Zenobi, Chem. Phys. Lett. 318, 131 (2000).
[CrossRef]

K. Youngworth and T. Brown, Opt. Express 7, 77 (2000).
[CrossRef]

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, Opt. Commun. 179, 1 (2000).
[CrossRef]

1999

V. Niziev and A. Nesterov, J. Phys. D 32, 1455 (1999).
[CrossRef]

1983

J. Fontana and R. Pantell, J. Appl. Phys. 54, 4285 (1983).
[CrossRef]

1959

B. Richards and E. Wolf, Proc. R. Soc. London, Ser. A 253, 358 (1959).
[CrossRef]

Banzer, P.

Beversluis, M.

A. Bouhelier, M. Beversluis, A. Hartschuh, and L. Novotny, Phys. Rev. Lett. 90, 013903 (2003).
[CrossRef]

L. Novotny, M. Beversluis, K. Youngworth, and T. Brown, Phys. Rev. Lett. 86, 5251 (2001).
[CrossRef]

Bharadwaj, P.

Born, M.

M. Born and E. Wolf, Principle of Optics (Pergamon, 1980).

Bouhelier, A.

A. Bouhelier, M. Beversluis, A. Hartschuh, and L. Novotny, Phys. Rev. Lett. 90, 013903 (2003).
[CrossRef]

Brown, T.

L. Novotny, M. Beversluis, K. Youngworth, and T. Brown, Phys. Rev. Lett. 86, 5251 (2001).
[CrossRef]

K. Youngworth and T. Brown, Opt. Express 7, 77 (2000).
[CrossRef]

Burr, G. W.

Burresi, M.

M. Burresi, D. van Oosten, T. Kampfrath, H. Schoenmaker, R. Heideman, A. Leinse, and L. Kuipers, Science 326, 550 (2009).
[CrossRef]

Charraut, D.

Choi, S.

K. Lee, H. Kihm, J. Kihm, W. Choi, H. Kim, C. Ropers, D. Park, Y. Yoon, S. Choi, D. Woo, J. Kim, B. Lee, Q. Parka, C. Lienau, and D. Kim, Nat. Photonics 1, 53 (2007).
[CrossRef]

Choi, W.

K. Lee, H. Kihm, J. Kihm, W. Choi, H. Kim, C. Ropers, D. Park, Y. Yoon, S. Choi, D. Woo, J. Kim, B. Lee, Q. Parka, C. Lienau, and D. Kim, Nat. Photonics 1, 53 (2007).
[CrossRef]

Courjon, D.

Deckert, V.

R. M. Stöckle, Y. D. Suh, V. Deckert, and R. Zenobi, Chem. Phys. Lett. 318, 131 (2000).
[CrossRef]

Deutsch, B.

Dorn, R.

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, Opt. Commun. 179, 1 (2000).
[CrossRef]

Eberler, M.

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, Opt. Commun. 179, 1 (2000).
[CrossRef]

Fontana, J.

J. Fontana and R. Pantell, J. Appl. Phys. 54, 4285 (1983).
[CrossRef]

Gauthier, I.

T. Grosjean and I. Gauthier, Opt. Commun. 294, 333 (2013).
[CrossRef]

Glöckl, O.

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, Opt. Commun. 179, 1 (2000).
[CrossRef]

Goodman, J.

J. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1968).

Grosjean, T.

Hagness, S.

A. Taflove and S. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed. (Artech House, 2005).

Hartschuh, A.

A. Bouhelier, M. Beversluis, A. Hartschuh, and L. Novotny, Phys. Rev. Lett. 90, 013903 (2003).
[CrossRef]

Hayazawa, N.

N. Hayazawa, Y. Saito, and S. Kawata, Appl. Phys. Lett. 85, 6239 (2004).
[CrossRef]

Heideman, R.

M. Burresi, D. van Oosten, T. Kampfrath, H. Schoenmaker, R. Heideman, A. Leinse, and L. Kuipers, Science 326, 550 (2009).
[CrossRef]

Ibrahim, I. A.

Kampfrath, T.

M. Burresi, D. van Oosten, T. Kampfrath, H. Schoenmaker, R. Heideman, A. Leinse, and L. Kuipers, Science 326, 550 (2009).
[CrossRef]

Kawata, S.

N. Hayazawa, Y. Saito, and S. Kawata, Appl. Phys. Lett. 85, 6239 (2004).
[CrossRef]

Kihm, H.

K. Lee, H. Kihm, J. Kihm, W. Choi, H. Kim, C. Ropers, D. Park, Y. Yoon, S. Choi, D. Woo, J. Kim, B. Lee, Q. Parka, C. Lienau, and D. Kim, Nat. Photonics 1, 53 (2007).
[CrossRef]

Kihm, J.

K. Lee, H. Kihm, J. Kihm, W. Choi, H. Kim, C. Ropers, D. Park, Y. Yoon, S. Choi, D. Woo, J. Kim, B. Lee, Q. Parka, C. Lienau, and D. Kim, Nat. Photonics 1, 53 (2007).
[CrossRef]

Kim, D.

K. Lee, H. Kihm, J. Kihm, W. Choi, H. Kim, C. Ropers, D. Park, Y. Yoon, S. Choi, D. Woo, J. Kim, B. Lee, Q. Parka, C. Lienau, and D. Kim, Nat. Photonics 1, 53 (2007).
[CrossRef]

Kim, H.

K. Lee, H. Kihm, J. Kihm, W. Choi, H. Kim, C. Ropers, D. Park, Y. Yoon, S. Choi, D. Woo, J. Kim, B. Lee, Q. Parka, C. Lienau, and D. Kim, Nat. Photonics 1, 53 (2007).
[CrossRef]

Kim, J.

K. Lee, H. Kihm, J. Kihm, W. Choi, H. Kim, C. Ropers, D. Park, Y. Yoon, S. Choi, D. Woo, J. Kim, B. Lee, Q. Parka, C. Lienau, and D. Kim, Nat. Photonics 1, 53 (2007).
[CrossRef]

Kuipers, L.

M. Burresi, D. van Oosten, T. Kampfrath, H. Schoenmaker, R. Heideman, A. Leinse, and L. Kuipers, Science 326, 550 (2009).
[CrossRef]

Lee, B.

K. Lee, H. Kihm, J. Kihm, W. Choi, H. Kim, C. Ropers, D. Park, Y. Yoon, S. Choi, D. Woo, J. Kim, B. Lee, Q. Parka, C. Lienau, and D. Kim, Nat. Photonics 1, 53 (2007).
[CrossRef]

Lee, K.

K. Lee, H. Kihm, J. Kihm, W. Choi, H. Kim, C. Ropers, D. Park, Y. Yoon, S. Choi, D. Woo, J. Kim, B. Lee, Q. Parka, C. Lienau, and D. Kim, Nat. Photonics 1, 53 (2007).
[CrossRef]

Leinse, A.

M. Burresi, D. van Oosten, T. Kampfrath, H. Schoenmaker, R. Heideman, A. Leinse, and L. Kuipers, Science 326, 550 (2009).
[CrossRef]

Leuchs, G.

P. Banzer, U. Peschel, S. Quabis, and G. Leuchs, Opt. Express 18, 10905 (2010).
[CrossRef]

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, Opt. Commun. 179, 1 (2000).
[CrossRef]

Lienau, C.

K. Lee, H. Kihm, J. Kihm, W. Choi, H. Kim, C. Ropers, D. Park, Y. Yoon, S. Choi, D. Woo, J. Kim, B. Lee, Q. Parka, C. Lienau, and D. Kim, Nat. Photonics 1, 53 (2007).
[CrossRef]

Mivelle, M.

Nesterov, A.

V. Niziev and A. Nesterov, J. Phys. D 32, 1455 (1999).
[CrossRef]

Niziev, V.

V. Niziev and A. Nesterov, J. Phys. D 32, 1455 (1999).
[CrossRef]

Novotny, L.

P. Bharadwaj, B. Deutsch, and L. Novotny, Adv. Opt. Photon. 1, 438 (2009).
[CrossRef]

A. Bouhelier, M. Beversluis, A. Hartschuh, and L. Novotny, Phys. Rev. Lett. 90, 013903 (2003).
[CrossRef]

L. Novotny, M. Beversluis, K. Youngworth, and T. Brown, Phys. Rev. Lett. 86, 5251 (2001).
[CrossRef]

Pantell, R.

J. Fontana and R. Pantell, J. Appl. Phys. 54, 4285 (1983).
[CrossRef]

Park, D.

K. Lee, H. Kihm, J. Kihm, W. Choi, H. Kim, C. Ropers, D. Park, Y. Yoon, S. Choi, D. Woo, J. Kim, B. Lee, Q. Parka, C. Lienau, and D. Kim, Nat. Photonics 1, 53 (2007).
[CrossRef]

Parka, Q.

K. Lee, H. Kihm, J. Kihm, W. Choi, H. Kim, C. Ropers, D. Park, Y. Yoon, S. Choi, D. Woo, J. Kim, B. Lee, Q. Parka, C. Lienau, and D. Kim, Nat. Photonics 1, 53 (2007).
[CrossRef]

Peschel, U.

Quabis, S.

P. Banzer, U. Peschel, S. Quabis, and G. Leuchs, Opt. Express 18, 10905 (2010).
[CrossRef]

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, Opt. Commun. 179, 1 (2000).
[CrossRef]

Richards, B.

B. Richards and E. Wolf, Proc. R. Soc. London, Ser. A 253, 358 (1959).
[CrossRef]

Ropers, C.

K. Lee, H. Kihm, J. Kihm, W. Choi, H. Kim, C. Ropers, D. Park, Y. Yoon, S. Choi, D. Woo, J. Kim, B. Lee, Q. Parka, C. Lienau, and D. Kim, Nat. Photonics 1, 53 (2007).
[CrossRef]

Sabac, A.

T. Grosjean, A. Sabac, and D. Courjon, Opt. Commun. 252, 12 (2005).
[CrossRef]

Saito, Y.

N. Hayazawa, Y. Saito, and S. Kawata, Appl. Phys. Lett. 85, 6239 (2004).
[CrossRef]

Schoenmaker, H.

M. Burresi, D. van Oosten, T. Kampfrath, H. Schoenmaker, R. Heideman, A. Leinse, and L. Kuipers, Science 326, 550 (2009).
[CrossRef]

Stöckle, R. M.

R. M. Stöckle, Y. D. Suh, V. Deckert, and R. Zenobi, Chem. Phys. Lett. 318, 131 (2000).
[CrossRef]

Suarez, M. A.

Suh, Y. D.

R. M. Stöckle, Y. D. Suh, V. Deckert, and R. Zenobi, Chem. Phys. Lett. 318, 131 (2000).
[CrossRef]

Taflove, A.

A. Taflove and S. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed. (Artech House, 2005).

van Oosten, D.

M. Burresi, D. van Oosten, T. Kampfrath, H. Schoenmaker, R. Heideman, A. Leinse, and L. Kuipers, Science 326, 550 (2009).
[CrossRef]

Wolf, E.

B. Richards and E. Wolf, Proc. R. Soc. London, Ser. A 253, 358 (1959).
[CrossRef]

M. Born and E. Wolf, Principle of Optics (Pergamon, 1980).

Woo, D.

K. Lee, H. Kihm, J. Kihm, W. Choi, H. Kim, C. Ropers, D. Park, Y. Yoon, S. Choi, D. Woo, J. Kim, B. Lee, Q. Parka, C. Lienau, and D. Kim, Nat. Photonics 1, 53 (2007).
[CrossRef]

Yoon, Y.

K. Lee, H. Kihm, J. Kihm, W. Choi, H. Kim, C. Ropers, D. Park, Y. Yoon, S. Choi, D. Woo, J. Kim, B. Lee, Q. Parka, C. Lienau, and D. Kim, Nat. Photonics 1, 53 (2007).
[CrossRef]

Youngworth, K.

L. Novotny, M. Beversluis, K. Youngworth, and T. Brown, Phys. Rev. Lett. 86, 5251 (2001).
[CrossRef]

K. Youngworth and T. Brown, Opt. Express 7, 77 (2000).
[CrossRef]

Zenobi, R.

R. M. Stöckle, Y. D. Suh, V. Deckert, and R. Zenobi, Chem. Phys. Lett. 318, 131 (2000).
[CrossRef]

Adv. Opt. Photon.

Appl. Phys. Lett.

N. Hayazawa, Y. Saito, and S. Kawata, Appl. Phys. Lett. 85, 6239 (2004).
[CrossRef]

Chem. Phys. Lett.

R. M. Stöckle, Y. D. Suh, V. Deckert, and R. Zenobi, Chem. Phys. Lett. 318, 131 (2000).
[CrossRef]

J. Appl. Phys.

J. Fontana and R. Pantell, J. Appl. Phys. 54, 4285 (1983).
[CrossRef]

J. Phys. D

V. Niziev and A. Nesterov, J. Phys. D 32, 1455 (1999).
[CrossRef]

Nat. Photonics

K. Lee, H. Kihm, J. Kihm, W. Choi, H. Kim, C. Ropers, D. Park, Y. Yoon, S. Choi, D. Woo, J. Kim, B. Lee, Q. Parka, C. Lienau, and D. Kim, Nat. Photonics 1, 53 (2007).
[CrossRef]

Opt. Commun.

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, Opt. Commun. 179, 1 (2000).
[CrossRef]

T. Grosjean and I. Gauthier, Opt. Commun. 294, 333 (2013).
[CrossRef]

T. Grosjean, A. Sabac, and D. Courjon, Opt. Commun. 252, 12 (2005).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. Lett.

L. Novotny, M. Beversluis, K. Youngworth, and T. Brown, Phys. Rev. Lett. 86, 5251 (2001).
[CrossRef]

A. Bouhelier, M. Beversluis, A. Hartschuh, and L. Novotny, Phys. Rev. Lett. 90, 013903 (2003).
[CrossRef]

Proc. R. Soc. London, Ser. A

B. Richards and E. Wolf, Proc. R. Soc. London, Ser. A 253, 358 (1959).
[CrossRef]

Science

M. Burresi, D. van Oosten, T. Kampfrath, H. Schoenmaker, R. Heideman, A. Leinse, and L. Kuipers, Science 326, 550 (2009).
[CrossRef]

Other

J. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1968).

T. Wilson, ed., Confocal Microscopy (Academic, 1990).

A. Taflove and S. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed. (Artech House, 2005).

M. Born and E. Wolf, Principle of Optics (Pergamon, 1980).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Scheme of the far-field detection system and principle of the detection process.

Fig. 2.
Fig. 2.

(a) Grating’s profile along (xz) plane measured by atomic force microscopy. This dielectric sample is used in transmission mode and contains 830 grooves per millimeter aligned along the (0y) axis. (b), (c) Simulation in a longitudinal (xz) plane of the intensity distribution of (b) Ey and (c) Hz produced by the grating at λ=632.8nm and with a s-polarized incident plane wave. (d), (e) Experimental acquisitions of the grating diffraction pattern in a longitudinal (xz) plane (d) without and (e) with azimuthal polarizer in the detection path of the microscope [the linear polarizer is oriented along (0y)]. The grating is illuminated from the backside with a s-polarized He–Ne laser beam at normal incidence. (f), (g) Theoretical (dashed curves) and experimental (solid curves) profiles of the grating’s diffracted field, (f) along the lines shown in (b) and (d) (electric field), and (g) along the lines shown in (c) and (e) (magnetic field).

Fig. 3.
Fig. 3.

(a)–(c) Simulation of the intensity distributions of (a) Ex, (b) Ez, and (c) Hz at the focus of an objective (NA=0.45) illuminated with an incident beam linearly polarized along (0x) [(0z) is the longitudinal axis]. The intensity distributions are plotted along the transverse (xy) plane at λ=632.8nm. (d)–(f) Experimental acquisitions of the diffraction pattern produced at the focal plane of a (×20, NA=0.45) objective by an incident He–Ne laser beam, linearly polarized along (0x), (d) with a single linear polarizer oriented along (0x), (e), (f) with the combinations of linear/radial and linear/azimuthal polarizers, respectively. (g) Profiles along (0x) of (d) (dashed curve), (e) (solid curve), and (a), (b) (|Ex|2 and |Ez|2, dotted curves). (h) Profiles along (0y) of (d) (dashed curve), (f) (solid curve), and (a), (c) (|Ex|2 and |Hz|2, dotted curves).

Metrics