Abstract

In this Letter, we experimentally demonstrate a hybrid structure consisting of metal nanoparticles deposited onto a subwavelength structure (SWS), which further increases the absorption of thin amorphous silicon (a-Si) and can possibly lead to a reduction in the minimum required thickness of the a-Si layer. Experimental results show that backscattering of the silver nanoparticles (Ag NPs) deposited on the top surface can be suppressed dramatically (by 85.5%) by the Ag NPs deposited on the SWS. We also experimentally prove that the thin a-Si SWS only lowers the surface reflectivity and does not increase the absorption rate of the material. The absorption of the thin a-Si layer can be increased by depositing Ag NPs onto a thin a-Si SWS, which not only reduces the backscattering of the metal NPs but also increases the light-trapping effect within thin a-Si through localized surface plasmon resonance properties. This decrease of reflection and increase in the light-trapping effect of Ag NPs on cone-shaped thin a-Si SWSs leads to extremely high average absorption (86.14%) within a 400 nm thick a-Si layer.

© 2013 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
AuAg bimetallic nonalloyed nanoparticles on a periodically nanostructured GaAs substrate for enhancing light trapping

Soo Kyung Lee, Chee Leong Tan, Gun Wu Ju, Jae Hong Song, Chan Il Yeo, and Yong Tak Lee
Opt. Lett. 40(24) 5798-5801 (2015)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription