Abstract

The spatial distributions of elements in a glass can be modulated by irradiation with high repetition rate femtosecond laser pulses. However, the shape of the distribution is restricted to being axially symmetric about the laser beam axis due to the isotropic diffusion of photo-thermal energy. In this study, we describe a method to control the shape of the elemental distribution more flexibly by simultaneous irradiation at multiple spots using a spatial light modulator. The accumulation of thermal energy was induced by focusing 250 kHz fs laser pulses at a single spot inside an alumino–borosilicate glass, and the transient temperature distribution was modulated by focusing 1 kHz laser pulses at four spots in the same glass. The resulting modification was square-shaped. A simulation of the mean diffusion length of molten glass demonstrated that the transient diffusion of elements under heat accumulation and repeated temperature elevation at multiple spots caused the square shape of the distribution.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Varshneya, Fundamentals of Inorganic Glasses (Academic, 1994).
  2. R. Sato, Y. Benino, T. Fujiwara, and T. Komatsu, J. Non-Cryst. Solids 289, 228 (2001).
    [CrossRef]
  3. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, Opt. Lett. 21, 1729 (1996).
    [CrossRef]
  4. C. B. Schaffer, A. Brodeur, J. F. García, and E. Mazur, Opt. Lett. 26, 93 (2001).
    [CrossRef]
  5. Y. Yonesaki, R. Araki, K. Miura, K. Fujita, and K. Hirao, J. Non-Cryst. Solids 351, 885 (2005).
  6. S. Kanehira, K. Miura, and K. Hirao, Appl. Phys. Lett. 93, 023112 (2008).
    [CrossRef]
  7. A. Stone, M. Sakakura, Y. Shimotsuma, G. Stone, P. Gupta, K. Miura, K. Hirao, V. Dierolf, and H. Jain, Opt. Express 17, 23284 (2009).
    [CrossRef]
  8. M. Shimizu, M. Sakakura, M. Ohnishi, Y. Shimotsuma, T. Nakaya, K. Miura, and K. Hirao, J. Appl. Phys. 108, 073533 (2010).
    [CrossRef]
  9. F. Luo, B. Qian, G. Lin, J. Xu, Y. Liao, J. Song, H. Sun, B. Zhu, J. Qiu, Q. Zhao, and Z. Xu, Opt. Express 18, 6262 (2010).
    [CrossRef]
  10. C. X. Fan, B. Poumellec, M. Lancry, X. He, H. D. Zeng, A. Erraji-Chahid, Q. M. Liu, and G. R. Chen, Opt. Lett. 37, 2955 (2012).
    [CrossRef]
  11. J. Choi, M. Bellec, A. Royon, K. Bourhis, G. Papon, T. Cardinal, L. Canioni, and M. Richardson, Opt. Lett. 37, 1029 (2012).
    [CrossRef]
  12. S. M. Eaton, H. Zhang, P. R. Herman, F. Yoshino, L. Shah, J. Bovatsek, and A. Y. Arai, Opt. Express 13, 4708 (2005).
    [CrossRef]
  13. M. Sakakura, M. Shimizu, Y. Shimotsuma, K. Miura, and K. Hirao, Appl. Phys. Lett. 93, 231112 (2008).
    [CrossRef]
  14. M. Shimizu, K. Miura, M. Sakakura, M. Nishi, Y. Shimotsuma, S. Kanehira, T. Nakaya, and K. Hirao, Appl. Phys. A 100, 1001 (2010).
  15. Y. Hayasaki, T. Sugimoto, A. Takita, and N. Nishida, Appl. Phys. Lett. 87, 031101 (2005).
    [CrossRef]
  16. M. Sakakura, T. Sawano, Y. Shimotsuma, K. Miura, and K. Hirao, Opt. Express 18, 12136 (2010).
    [CrossRef]
  17. J. Bengtsson, Appl. Opt. 33, 6879 (1994).
    [CrossRef]
  18. M. Shimizu, M. Sakakura, S. Kanehira, M. Nishi, Y. Shimotsuma, K. Hirao, and K. Miura, Opt. Lett. 36, 2161 (2011).
    [CrossRef]
  19. K.-H. Sun, J. Am. Ceram. Soc. 30, 277 (1947).
    [CrossRef]
  20. M. Shimizu, M. Sakakura, M. Ohnishi, M. Yamaji, Y. Shimotsuma, K. Hirao, and K. Miura, Opt. Express 20, 934 (2012).
    [CrossRef]
  21. I. Miyamoto, A. Horn, and J. Gottmann, J. Laser Micro Nanoen. 2, 7 (2007).
  22. P. Atkins and J. de Paula, Physical Chemistry (Oxford University, 2006), Chap. 21.

2012

2011

2010

F. Luo, B. Qian, G. Lin, J. Xu, Y. Liao, J. Song, H. Sun, B. Zhu, J. Qiu, Q. Zhao, and Z. Xu, Opt. Express 18, 6262 (2010).
[CrossRef]

M. Sakakura, T. Sawano, Y. Shimotsuma, K. Miura, and K. Hirao, Opt. Express 18, 12136 (2010).
[CrossRef]

M. Shimizu, M. Sakakura, M. Ohnishi, Y. Shimotsuma, T. Nakaya, K. Miura, and K. Hirao, J. Appl. Phys. 108, 073533 (2010).
[CrossRef]

M. Shimizu, K. Miura, M. Sakakura, M. Nishi, Y. Shimotsuma, S. Kanehira, T. Nakaya, and K. Hirao, Appl. Phys. A 100, 1001 (2010).

2009

2008

S. Kanehira, K. Miura, and K. Hirao, Appl. Phys. Lett. 93, 023112 (2008).
[CrossRef]

M. Sakakura, M. Shimizu, Y. Shimotsuma, K. Miura, and K. Hirao, Appl. Phys. Lett. 93, 231112 (2008).
[CrossRef]

2007

I. Miyamoto, A. Horn, and J. Gottmann, J. Laser Micro Nanoen. 2, 7 (2007).

2005

Y. Hayasaki, T. Sugimoto, A. Takita, and N. Nishida, Appl. Phys. Lett. 87, 031101 (2005).
[CrossRef]

Y. Yonesaki, R. Araki, K. Miura, K. Fujita, and K. Hirao, J. Non-Cryst. Solids 351, 885 (2005).

S. M. Eaton, H. Zhang, P. R. Herman, F. Yoshino, L. Shah, J. Bovatsek, and A. Y. Arai, Opt. Express 13, 4708 (2005).
[CrossRef]

2001

C. B. Schaffer, A. Brodeur, J. F. García, and E. Mazur, Opt. Lett. 26, 93 (2001).
[CrossRef]

R. Sato, Y. Benino, T. Fujiwara, and T. Komatsu, J. Non-Cryst. Solids 289, 228 (2001).
[CrossRef]

1996

1994

1947

K.-H. Sun, J. Am. Ceram. Soc. 30, 277 (1947).
[CrossRef]

Arai, A. Y.

Araki, R.

Y. Yonesaki, R. Araki, K. Miura, K. Fujita, and K. Hirao, J. Non-Cryst. Solids 351, 885 (2005).

Atkins, P.

P. Atkins and J. de Paula, Physical Chemistry (Oxford University, 2006), Chap. 21.

Bellec, M.

Bengtsson, J.

Benino, Y.

R. Sato, Y. Benino, T. Fujiwara, and T. Komatsu, J. Non-Cryst. Solids 289, 228 (2001).
[CrossRef]

Bourhis, K.

Bovatsek, J.

Brodeur, A.

Canioni, L.

Cardinal, T.

Chen, G. R.

Choi, J.

Davis, K. M.

de Paula, J.

P. Atkins and J. de Paula, Physical Chemistry (Oxford University, 2006), Chap. 21.

Dierolf, V.

Eaton, S. M.

Erraji-Chahid, A.

Fan, C. X.

Fujita, K.

Y. Yonesaki, R. Araki, K. Miura, K. Fujita, and K. Hirao, J. Non-Cryst. Solids 351, 885 (2005).

Fujiwara, T.

R. Sato, Y. Benino, T. Fujiwara, and T. Komatsu, J. Non-Cryst. Solids 289, 228 (2001).
[CrossRef]

García, J. F.

Gottmann, J.

I. Miyamoto, A. Horn, and J. Gottmann, J. Laser Micro Nanoen. 2, 7 (2007).

Gupta, P.

Hayasaki, Y.

Y. Hayasaki, T. Sugimoto, A. Takita, and N. Nishida, Appl. Phys. Lett. 87, 031101 (2005).
[CrossRef]

He, X.

Herman, P. R.

Hirao, K.

M. Shimizu, M. Sakakura, M. Ohnishi, M. Yamaji, Y. Shimotsuma, K. Hirao, and K. Miura, Opt. Express 20, 934 (2012).
[CrossRef]

M. Shimizu, M. Sakakura, S. Kanehira, M. Nishi, Y. Shimotsuma, K. Hirao, and K. Miura, Opt. Lett. 36, 2161 (2011).
[CrossRef]

M. Shimizu, K. Miura, M. Sakakura, M. Nishi, Y. Shimotsuma, S. Kanehira, T. Nakaya, and K. Hirao, Appl. Phys. A 100, 1001 (2010).

M. Sakakura, T. Sawano, Y. Shimotsuma, K. Miura, and K. Hirao, Opt. Express 18, 12136 (2010).
[CrossRef]

M. Shimizu, M. Sakakura, M. Ohnishi, Y. Shimotsuma, T. Nakaya, K. Miura, and K. Hirao, J. Appl. Phys. 108, 073533 (2010).
[CrossRef]

A. Stone, M. Sakakura, Y. Shimotsuma, G. Stone, P. Gupta, K. Miura, K. Hirao, V. Dierolf, and H. Jain, Opt. Express 17, 23284 (2009).
[CrossRef]

S. Kanehira, K. Miura, and K. Hirao, Appl. Phys. Lett. 93, 023112 (2008).
[CrossRef]

M. Sakakura, M. Shimizu, Y. Shimotsuma, K. Miura, and K. Hirao, Appl. Phys. Lett. 93, 231112 (2008).
[CrossRef]

Y. Yonesaki, R. Araki, K. Miura, K. Fujita, and K. Hirao, J. Non-Cryst. Solids 351, 885 (2005).

K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, Opt. Lett. 21, 1729 (1996).
[CrossRef]

Horn, A.

I. Miyamoto, A. Horn, and J. Gottmann, J. Laser Micro Nanoen. 2, 7 (2007).

Jain, H.

Kanehira, S.

M. Shimizu, M. Sakakura, S. Kanehira, M. Nishi, Y. Shimotsuma, K. Hirao, and K. Miura, Opt. Lett. 36, 2161 (2011).
[CrossRef]

M. Shimizu, K. Miura, M. Sakakura, M. Nishi, Y. Shimotsuma, S. Kanehira, T. Nakaya, and K. Hirao, Appl. Phys. A 100, 1001 (2010).

S. Kanehira, K. Miura, and K. Hirao, Appl. Phys. Lett. 93, 023112 (2008).
[CrossRef]

Komatsu, T.

R. Sato, Y. Benino, T. Fujiwara, and T. Komatsu, J. Non-Cryst. Solids 289, 228 (2001).
[CrossRef]

Lancry, M.

Liao, Y.

Lin, G.

Liu, Q. M.

Luo, F.

Mazur, E.

Miura, K.

M. Shimizu, M. Sakakura, M. Ohnishi, M. Yamaji, Y. Shimotsuma, K. Hirao, and K. Miura, Opt. Express 20, 934 (2012).
[CrossRef]

M. Shimizu, M. Sakakura, S. Kanehira, M. Nishi, Y. Shimotsuma, K. Hirao, and K. Miura, Opt. Lett. 36, 2161 (2011).
[CrossRef]

M. Shimizu, K. Miura, M. Sakakura, M. Nishi, Y. Shimotsuma, S. Kanehira, T. Nakaya, and K. Hirao, Appl. Phys. A 100, 1001 (2010).

M. Shimizu, M. Sakakura, M. Ohnishi, Y. Shimotsuma, T. Nakaya, K. Miura, and K. Hirao, J. Appl. Phys. 108, 073533 (2010).
[CrossRef]

M. Sakakura, T. Sawano, Y. Shimotsuma, K. Miura, and K. Hirao, Opt. Express 18, 12136 (2010).
[CrossRef]

A. Stone, M. Sakakura, Y. Shimotsuma, G. Stone, P. Gupta, K. Miura, K. Hirao, V. Dierolf, and H. Jain, Opt. Express 17, 23284 (2009).
[CrossRef]

M. Sakakura, M. Shimizu, Y. Shimotsuma, K. Miura, and K. Hirao, Appl. Phys. Lett. 93, 231112 (2008).
[CrossRef]

S. Kanehira, K. Miura, and K. Hirao, Appl. Phys. Lett. 93, 023112 (2008).
[CrossRef]

Y. Yonesaki, R. Araki, K. Miura, K. Fujita, and K. Hirao, J. Non-Cryst. Solids 351, 885 (2005).

K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, Opt. Lett. 21, 1729 (1996).
[CrossRef]

Miyamoto, I.

I. Miyamoto, A. Horn, and J. Gottmann, J. Laser Micro Nanoen. 2, 7 (2007).

Nakaya, T.

M. Shimizu, M. Sakakura, M. Ohnishi, Y. Shimotsuma, T. Nakaya, K. Miura, and K. Hirao, J. Appl. Phys. 108, 073533 (2010).
[CrossRef]

M. Shimizu, K. Miura, M. Sakakura, M. Nishi, Y. Shimotsuma, S. Kanehira, T. Nakaya, and K. Hirao, Appl. Phys. A 100, 1001 (2010).

Nishi, M.

M. Shimizu, M. Sakakura, S. Kanehira, M. Nishi, Y. Shimotsuma, K. Hirao, and K. Miura, Opt. Lett. 36, 2161 (2011).
[CrossRef]

M. Shimizu, K. Miura, M. Sakakura, M. Nishi, Y. Shimotsuma, S. Kanehira, T. Nakaya, and K. Hirao, Appl. Phys. A 100, 1001 (2010).

Nishida, N.

Y. Hayasaki, T. Sugimoto, A. Takita, and N. Nishida, Appl. Phys. Lett. 87, 031101 (2005).
[CrossRef]

Ohnishi, M.

M. Shimizu, M. Sakakura, M. Ohnishi, M. Yamaji, Y. Shimotsuma, K. Hirao, and K. Miura, Opt. Express 20, 934 (2012).
[CrossRef]

M. Shimizu, M. Sakakura, M. Ohnishi, Y. Shimotsuma, T. Nakaya, K. Miura, and K. Hirao, J. Appl. Phys. 108, 073533 (2010).
[CrossRef]

Papon, G.

Poumellec, B.

Qian, B.

Qiu, J.

Richardson, M.

Royon, A.

Sakakura, M.

M. Shimizu, M. Sakakura, M. Ohnishi, M. Yamaji, Y. Shimotsuma, K. Hirao, and K. Miura, Opt. Express 20, 934 (2012).
[CrossRef]

M. Shimizu, M. Sakakura, S. Kanehira, M. Nishi, Y. Shimotsuma, K. Hirao, and K. Miura, Opt. Lett. 36, 2161 (2011).
[CrossRef]

M. Shimizu, K. Miura, M. Sakakura, M. Nishi, Y. Shimotsuma, S. Kanehira, T. Nakaya, and K. Hirao, Appl. Phys. A 100, 1001 (2010).

M. Sakakura, T. Sawano, Y. Shimotsuma, K. Miura, and K. Hirao, Opt. Express 18, 12136 (2010).
[CrossRef]

M. Shimizu, M. Sakakura, M. Ohnishi, Y. Shimotsuma, T. Nakaya, K. Miura, and K. Hirao, J. Appl. Phys. 108, 073533 (2010).
[CrossRef]

A. Stone, M. Sakakura, Y. Shimotsuma, G. Stone, P. Gupta, K. Miura, K. Hirao, V. Dierolf, and H. Jain, Opt. Express 17, 23284 (2009).
[CrossRef]

M. Sakakura, M. Shimizu, Y. Shimotsuma, K. Miura, and K. Hirao, Appl. Phys. Lett. 93, 231112 (2008).
[CrossRef]

Sato, R.

R. Sato, Y. Benino, T. Fujiwara, and T. Komatsu, J. Non-Cryst. Solids 289, 228 (2001).
[CrossRef]

Sawano, T.

Schaffer, C. B.

Shah, L.

Shimizu, M.

M. Shimizu, M. Sakakura, M. Ohnishi, M. Yamaji, Y. Shimotsuma, K. Hirao, and K. Miura, Opt. Express 20, 934 (2012).
[CrossRef]

M. Shimizu, M. Sakakura, S. Kanehira, M. Nishi, Y. Shimotsuma, K. Hirao, and K. Miura, Opt. Lett. 36, 2161 (2011).
[CrossRef]

M. Shimizu, K. Miura, M. Sakakura, M. Nishi, Y. Shimotsuma, S. Kanehira, T. Nakaya, and K. Hirao, Appl. Phys. A 100, 1001 (2010).

M. Shimizu, M. Sakakura, M. Ohnishi, Y. Shimotsuma, T. Nakaya, K. Miura, and K. Hirao, J. Appl. Phys. 108, 073533 (2010).
[CrossRef]

M. Sakakura, M. Shimizu, Y. Shimotsuma, K. Miura, and K. Hirao, Appl. Phys. Lett. 93, 231112 (2008).
[CrossRef]

Shimotsuma, Y.

M. Shimizu, M. Sakakura, M. Ohnishi, M. Yamaji, Y. Shimotsuma, K. Hirao, and K. Miura, Opt. Express 20, 934 (2012).
[CrossRef]

M. Shimizu, M. Sakakura, S. Kanehira, M. Nishi, Y. Shimotsuma, K. Hirao, and K. Miura, Opt. Lett. 36, 2161 (2011).
[CrossRef]

M. Shimizu, K. Miura, M. Sakakura, M. Nishi, Y. Shimotsuma, S. Kanehira, T. Nakaya, and K. Hirao, Appl. Phys. A 100, 1001 (2010).

M. Sakakura, T. Sawano, Y. Shimotsuma, K. Miura, and K. Hirao, Opt. Express 18, 12136 (2010).
[CrossRef]

M. Shimizu, M. Sakakura, M. Ohnishi, Y. Shimotsuma, T. Nakaya, K. Miura, and K. Hirao, J. Appl. Phys. 108, 073533 (2010).
[CrossRef]

A. Stone, M. Sakakura, Y. Shimotsuma, G. Stone, P. Gupta, K. Miura, K. Hirao, V. Dierolf, and H. Jain, Opt. Express 17, 23284 (2009).
[CrossRef]

M. Sakakura, M. Shimizu, Y. Shimotsuma, K. Miura, and K. Hirao, Appl. Phys. Lett. 93, 231112 (2008).
[CrossRef]

Song, J.

Stone, A.

Stone, G.

Sugimoto, N.

Sugimoto, T.

Y. Hayasaki, T. Sugimoto, A. Takita, and N. Nishida, Appl. Phys. Lett. 87, 031101 (2005).
[CrossRef]

Sun, H.

Sun, K.-H.

K.-H. Sun, J. Am. Ceram. Soc. 30, 277 (1947).
[CrossRef]

Takita, A.

Y. Hayasaki, T. Sugimoto, A. Takita, and N. Nishida, Appl. Phys. Lett. 87, 031101 (2005).
[CrossRef]

Varshneya, K.

K. Varshneya, Fundamentals of Inorganic Glasses (Academic, 1994).

Xu, J.

Xu, Z.

Yamaji, M.

Yonesaki, Y.

Y. Yonesaki, R. Araki, K. Miura, K. Fujita, and K. Hirao, J. Non-Cryst. Solids 351, 885 (2005).

Yoshino, F.

Zeng, H. D.

Zhang, H.

Zhao, Q.

Zhu, B.

Appl. Opt.

Appl. Phys. A

M. Shimizu, K. Miura, M. Sakakura, M. Nishi, Y. Shimotsuma, S. Kanehira, T. Nakaya, and K. Hirao, Appl. Phys. A 100, 1001 (2010).

Appl. Phys. Lett.

Y. Hayasaki, T. Sugimoto, A. Takita, and N. Nishida, Appl. Phys. Lett. 87, 031101 (2005).
[CrossRef]

S. Kanehira, K. Miura, and K. Hirao, Appl. Phys. Lett. 93, 023112 (2008).
[CrossRef]

M. Sakakura, M. Shimizu, Y. Shimotsuma, K. Miura, and K. Hirao, Appl. Phys. Lett. 93, 231112 (2008).
[CrossRef]

J. Am. Ceram. Soc.

K.-H. Sun, J. Am. Ceram. Soc. 30, 277 (1947).
[CrossRef]

J. Appl. Phys.

M. Shimizu, M. Sakakura, M. Ohnishi, Y. Shimotsuma, T. Nakaya, K. Miura, and K. Hirao, J. Appl. Phys. 108, 073533 (2010).
[CrossRef]

J. Laser Micro Nanoen.

I. Miyamoto, A. Horn, and J. Gottmann, J. Laser Micro Nanoen. 2, 7 (2007).

J. Non-Cryst. Solids

R. Sato, Y. Benino, T. Fujiwara, and T. Komatsu, J. Non-Cryst. Solids 289, 228 (2001).
[CrossRef]

Y. Yonesaki, R. Araki, K. Miura, K. Fujita, and K. Hirao, J. Non-Cryst. Solids 351, 885 (2005).

Opt. Express

Opt. Lett.

Other

K. Varshneya, Fundamentals of Inorganic Glasses (Academic, 1994).

P. Atkins and J. de Paula, Physical Chemistry (Oxford University, 2006), Chap. 21.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a) Experimental setup for simultaneous multispot irradiation with 1 kHz and 250 kHz fs laser pulses. M are mirrors; L1, L2: lenses (f=300mm and 125 mm, respectively). (b) Schematic illustration of multispot fs laser irradiation inside a glass. (c) Phase hologram to modulate the 1 kHz fs laser pulses. (d) Simulated light intensity distribution at the focus.

Fig. 2.
Fig. 2.

(a) Transmission optical microscope images of the modification during (left) and (b) after (right) irradiation with 250 kHz laser pulses at the center and those with multispot irradiation (250 kHz at the center and 1 kHz at the surrounding four spots). (c) and (d) Distributions of elements by EPMA in the modifications after single spot and multiple spot irradiation, respectively. The color bars indicate the signal intensities in EPMA. The signal intensities at unmodified regions are 100.

Fig. 3.
Fig. 3.

Schematic illustration of elemental distribution changes and heat modification after fs laser irradiation at a high repetition rate in the case of (a) 250 kHz irradiation at the center and (b) 250 kHz irradiation at the center and 1 kHz irradiation at the surrounding four points.

Fig. 4.
Fig. 4.

(a) Simulated temporal evolution of temperature distribution inside a glass after 1 kHz irradiation at 500 ms after the onset of multiple spot laser irradiation. (b) Spatial distributions of simulated mean diffusion length of molten glass at various laser exposure times. (c) Transmission optical microscope images of modifications induced by simultaneous multispot fs laser irradiation in various exposure times. (d) Magnified images of the dotted red-squared region of (c).

Fig. 5.
Fig. 5.

Triangle, square, and hexagonal shapes of molten regions produced inside an alumino–borosilicate glass by irradiation with 250 kHz fs laser pulses at the center and 1 kHz fs laser pulses at three, four, and six spots, respectively.

Tables (1)

Tables Icon

Table 1. Parameters for Simulation of Temperature Distribution Changea

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

DM(T)=kBT6πη(T)rM,
LD(x,y)=|0texpDM(T(t,x,y))dt|0.5,

Metrics