Abstract

The use of individual multimode optical fibers in endoscopy applications has the potential to provide highly miniaturized and noninvasive probes for microscopy and optical micromanipulation. A few different strategies have been proposed recently, but they all suffer from intrinsically low resolution related to the low numerical aperture of multimode fibers. Here, we show that two-photon polymerization allows for direct fabrication of micro-optics components on the fiber end, resulting in an increase of the numerical aperture to a value that is close to 1. Coupling light into the fiber through a spatial light modulator, we were able to optically scan a submicrometer spot (300 nm FWHM) over an extended region, facing the opposite fiber end. Fluorescence imaging with improved resolution is also demonstrated.

© 2013 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Rotational memory effect of a multimode fiber

Lyubov V. Amitonova, Allard P. Mosk, and Pepijn W. H. Pinkse
Opt. Express 23(16) 20569-20575 (2015)

Adaptive control of input field to achieve desired output intensity profile in multimode fiber with random mode coupling

Reza Nasiri Mahalati, Daulet Askarov, Jeffrey P. Wilde, and Joseph M. Kahn
Opt. Express 20(13) 14321-14337 (2012)

Resolution limits for imaging through multi-mode fiber

Reza Nasiri Mahalati, Ruo Yu Gu, and Joseph M. Kahn
Opt. Express 21(2) 1656-1668 (2013)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (6)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription