Abstract

We demonstrate a compact ultrafast source centered at 850 nm with >200nm bandwidth (full width at half-maximum) based on a 3 GHz Yb-fiber master-oscillator-power-amplifier system. The output pulses (with up to 13 W average power) from the laser system are coupled into short (<50mm) pieces of photonic crystal fibers to excite broadband fiber-optic Cherenkov radiation; the resulting broad phase-matching bandwidth due to short fiber length produces an upconverted spectrum spanning in the wavelength range of 750–950 nm with average power of 94, 184, and 380 mW for fiber length of 28, 37, and 48 mm, respectively. The spectrum generated from the 37 mm fiber is then dechirped by eight double-chirped mirrors, leading to compressed pulses 14fs in duration. Such an ultrafast source is a promising substitute of multigigahertz mode-locked Ti:sapphire lasers for applications in optical frequency metrology and multiphoton coherent microscopy.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Ell, U. Morgner, F. X. Kaertner, J. G. Fujimoto, E. P. Ippen, V. Scheuer, G. Angelow, T. Tschudi, M. J. Lederer, A. Boiko, and B. Luther-Davies, Opt. Lett. 26, 373 (2001).
    [CrossRef]
  2. B. R. Masters and P. So, Handbook of Biomedical Nonlinear Optical Microscopy (Oxford University, 2008).
  3. U. Demirbas, M. Schmalz, B. Sumpf, G. Erbert, G. S. Petrich, L. A. Kolodziejski, J. G. Fujimoto, F. X. Kärtner, and A. Leitenstorfer, Opt. Express 19, 20444 (2011).
    [CrossRef]
  4. U. Demirbas, D. Li, J. R. Birge, A. Sennaroglu, G. S. Petrich, L. A. Kolodziejski, F. X. Kaertner, and J. G. Fujimoto, Opt. Express 17, 14374 (2009).
    [CrossRef]
  5. U. Demirbas, R. Uecker, D. Klimm, and J. Wang, Appl. Opt. 51, 8440 (2012).
    [CrossRef]
  6. S. Uemura and K. Torizuka, Opt. Lett. 24, 780 (1999).
    [CrossRef]
  7. A. Chong, H. Liu, B. Nie, B. G. Bale, S. Wabnitz, W. H. Renninger, M. Dantus, and F. W. Wise, Opt. Express 20, 14213 (2012).
    [CrossRef]
  8. Y. Lan, Y. Song, M. Hu, B. Liu, L. Chai, and C. Wang, Opt. Lett. 38, 1292 (2013).
    [CrossRef]
  9. P. K. A. Wai, C. R. Menyuk, Y. C. Lee, and H. H. Chen, Opt. Lett. 11, 464 (1986).
    [CrossRef]
  10. V. I. Karpman, Phys. Rev. E 47, 2073 (1993).
    [CrossRef]
  11. N. Akhmediev and M. Karlsson, Phys. Rev. A 51, 2602 (1995).
    [CrossRef]
  12. D. V. Skryabin, F. Luan, J. C. Knight, and P. St. J. Russell, Science 301, 1705 (2003).
    [CrossRef]
  13. L. Tartara, I. Cristiani, and V. Degiorgio, Appl. Phys. B 77, 307 (2003).
    [CrossRef]
  14. X. Liu, G. E. Villanueva, J. Laegsgaard, U. Moller, H. Tu, S. A. Boppart, and D. Turchinovich, IEEE Photon. Technol. Lett. 25, 892 (2013).
    [CrossRef]
  15. H. Tu and S. A. Boppart, Opt. Express 17, 9858 (2009).
    [CrossRef]
  16. Y. Deng, F. Lu, and W. Knox, Opt. Express 13, 4589 (2005).
    [CrossRef]
  17. G. Chang, C.-H. Li, A. Glenday, G. Furesz, N. Langellier, L.-J. Chen, M. W. Webber, J. Lim, H.-W. Chen, D. F. Phillips, A. Szentgyorgyi, R. L. Walsworth, and F. X. Kaertner, in Conference on Lasers and Electro-Optics 2012, OSA Technical Digest (online) (Optical Society of America, 2012), paper CF2C.4.
  18. G. Chang, L.-J. Chen, and F. X. Kärtner, Opt. Lett. 35, 2361 (2010).
    [CrossRef]
  19. G. Chang, L.-J. Chen, and F. X. Kärtner, Opt. Express 19, 6635 (2011).
    [CrossRef]
  20. G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, 2001).
  21. H.-W. Chen, G. Chang, S. Xu, Z. Yang, and F. X. Kärtner, Opt. Lett. 37, 3522 (2012).
    [CrossRef]
  22. H.-W. Chen, J. Lim, S.-W. Huang, D. N. Schimpf, F. X. Kärtner, and G. Chang, Opt. Express 20, 28672 (2012).
    [CrossRef]
  23. A. Sell, G. Krauss, R. Scheu, R. Huber, and A. Leitenstorfer, Opt. Express 17, 1070 (2009).
    [CrossRef]
  24. N. Ji, J. C. Magee, and E. Betzig, Nat. Methods 5, 197 (2008).
    [CrossRef]
  25. C.-H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kartner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, Nature 452, 610 (2008).
    [CrossRef]

2013 (2)

X. Liu, G. E. Villanueva, J. Laegsgaard, U. Moller, H. Tu, S. A. Boppart, and D. Turchinovich, IEEE Photon. Technol. Lett. 25, 892 (2013).
[CrossRef]

Y. Lan, Y. Song, M. Hu, B. Liu, L. Chai, and C. Wang, Opt. Lett. 38, 1292 (2013).
[CrossRef]

2012 (4)

2011 (2)

2010 (1)

2009 (3)

2008 (2)

N. Ji, J. C. Magee, and E. Betzig, Nat. Methods 5, 197 (2008).
[CrossRef]

C.-H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kartner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, Nature 452, 610 (2008).
[CrossRef]

2005 (1)

2003 (2)

D. V. Skryabin, F. Luan, J. C. Knight, and P. St. J. Russell, Science 301, 1705 (2003).
[CrossRef]

L. Tartara, I. Cristiani, and V. Degiorgio, Appl. Phys. B 77, 307 (2003).
[CrossRef]

2001 (1)

1999 (1)

1995 (1)

N. Akhmediev and M. Karlsson, Phys. Rev. A 51, 2602 (1995).
[CrossRef]

1993 (1)

V. I. Karpman, Phys. Rev. E 47, 2073 (1993).
[CrossRef]

1986 (1)

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, 2001).

Akhmediev, N.

N. Akhmediev and M. Karlsson, Phys. Rev. A 51, 2602 (1995).
[CrossRef]

Angelow, G.

Bale, B. G.

Benedick, A. J.

C.-H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kartner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, Nature 452, 610 (2008).
[CrossRef]

Betzig, E.

N. Ji, J. C. Magee, and E. Betzig, Nat. Methods 5, 197 (2008).
[CrossRef]

Birge, J. R.

Boiko, A.

Boppart, S. A.

X. Liu, G. E. Villanueva, J. Laegsgaard, U. Moller, H. Tu, S. A. Boppart, and D. Turchinovich, IEEE Photon. Technol. Lett. 25, 892 (2013).
[CrossRef]

H. Tu and S. A. Boppart, Opt. Express 17, 9858 (2009).
[CrossRef]

Chai, L.

Chang, G.

H.-W. Chen, J. Lim, S.-W. Huang, D. N. Schimpf, F. X. Kärtner, and G. Chang, Opt. Express 20, 28672 (2012).
[CrossRef]

H.-W. Chen, G. Chang, S. Xu, Z. Yang, and F. X. Kärtner, Opt. Lett. 37, 3522 (2012).
[CrossRef]

G. Chang, L.-J. Chen, and F. X. Kärtner, Opt. Express 19, 6635 (2011).
[CrossRef]

G. Chang, L.-J. Chen, and F. X. Kärtner, Opt. Lett. 35, 2361 (2010).
[CrossRef]

G. Chang, C.-H. Li, A. Glenday, G. Furesz, N. Langellier, L.-J. Chen, M. W. Webber, J. Lim, H.-W. Chen, D. F. Phillips, A. Szentgyorgyi, R. L. Walsworth, and F. X. Kaertner, in Conference on Lasers and Electro-Optics 2012, OSA Technical Digest (online) (Optical Society of America, 2012), paper CF2C.4.

Chen, H. H.

Chen, H.-W.

H.-W. Chen, G. Chang, S. Xu, Z. Yang, and F. X. Kärtner, Opt. Lett. 37, 3522 (2012).
[CrossRef]

H.-W. Chen, J. Lim, S.-W. Huang, D. N. Schimpf, F. X. Kärtner, and G. Chang, Opt. Express 20, 28672 (2012).
[CrossRef]

G. Chang, C.-H. Li, A. Glenday, G. Furesz, N. Langellier, L.-J. Chen, M. W. Webber, J. Lim, H.-W. Chen, D. F. Phillips, A. Szentgyorgyi, R. L. Walsworth, and F. X. Kaertner, in Conference on Lasers and Electro-Optics 2012, OSA Technical Digest (online) (Optical Society of America, 2012), paper CF2C.4.

Chen, L.-J.

G. Chang, L.-J. Chen, and F. X. Kärtner, Opt. Express 19, 6635 (2011).
[CrossRef]

G. Chang, L.-J. Chen, and F. X. Kärtner, Opt. Lett. 35, 2361 (2010).
[CrossRef]

G. Chang, C.-H. Li, A. Glenday, G. Furesz, N. Langellier, L.-J. Chen, M. W. Webber, J. Lim, H.-W. Chen, D. F. Phillips, A. Szentgyorgyi, R. L. Walsworth, and F. X. Kaertner, in Conference on Lasers and Electro-Optics 2012, OSA Technical Digest (online) (Optical Society of America, 2012), paper CF2C.4.

Chong, A.

Cristiani, I.

L. Tartara, I. Cristiani, and V. Degiorgio, Appl. Phys. B 77, 307 (2003).
[CrossRef]

Dantus, M.

Degiorgio, V.

L. Tartara, I. Cristiani, and V. Degiorgio, Appl. Phys. B 77, 307 (2003).
[CrossRef]

Demirbas, U.

Deng, Y.

Ell, R.

Erbert, G.

Fendel, P.

C.-H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kartner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, Nature 452, 610 (2008).
[CrossRef]

Fujimoto, J. G.

Furesz, G.

G. Chang, C.-H. Li, A. Glenday, G. Furesz, N. Langellier, L.-J. Chen, M. W. Webber, J. Lim, H.-W. Chen, D. F. Phillips, A. Szentgyorgyi, R. L. Walsworth, and F. X. Kaertner, in Conference on Lasers and Electro-Optics 2012, OSA Technical Digest (online) (Optical Society of America, 2012), paper CF2C.4.

Glenday, A.

G. Chang, C.-H. Li, A. Glenday, G. Furesz, N. Langellier, L.-J. Chen, M. W. Webber, J. Lim, H.-W. Chen, D. F. Phillips, A. Szentgyorgyi, R. L. Walsworth, and F. X. Kaertner, in Conference on Lasers and Electro-Optics 2012, OSA Technical Digest (online) (Optical Society of America, 2012), paper CF2C.4.

Glenday, A. G.

C.-H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kartner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, Nature 452, 610 (2008).
[CrossRef]

Hu, M.

Huang, S.-W.

Huber, R.

Ippen, E. P.

Ji, N.

N. Ji, J. C. Magee, and E. Betzig, Nat. Methods 5, 197 (2008).
[CrossRef]

Kaertner, F. X.

U. Demirbas, D. Li, J. R. Birge, A. Sennaroglu, G. S. Petrich, L. A. Kolodziejski, F. X. Kaertner, and J. G. Fujimoto, Opt. Express 17, 14374 (2009).
[CrossRef]

R. Ell, U. Morgner, F. X. Kaertner, J. G. Fujimoto, E. P. Ippen, V. Scheuer, G. Angelow, T. Tschudi, M. J. Lederer, A. Boiko, and B. Luther-Davies, Opt. Lett. 26, 373 (2001).
[CrossRef]

G. Chang, C.-H. Li, A. Glenday, G. Furesz, N. Langellier, L.-J. Chen, M. W. Webber, J. Lim, H.-W. Chen, D. F. Phillips, A. Szentgyorgyi, R. L. Walsworth, and F. X. Kaertner, in Conference on Lasers and Electro-Optics 2012, OSA Technical Digest (online) (Optical Society of America, 2012), paper CF2C.4.

Karlsson, M.

N. Akhmediev and M. Karlsson, Phys. Rev. A 51, 2602 (1995).
[CrossRef]

Karpman, V. I.

V. I. Karpman, Phys. Rev. E 47, 2073 (1993).
[CrossRef]

Kartner, F. X.

C.-H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kartner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, Nature 452, 610 (2008).
[CrossRef]

Kärtner, F. X.

Klimm, D.

Knight, J. C.

D. V. Skryabin, F. Luan, J. C. Knight, and P. St. J. Russell, Science 301, 1705 (2003).
[CrossRef]

Knox, W.

Kolodziejski, L. A.

Krauss, G.

Laegsgaard, J.

X. Liu, G. E. Villanueva, J. Laegsgaard, U. Moller, H. Tu, S. A. Boppart, and D. Turchinovich, IEEE Photon. Technol. Lett. 25, 892 (2013).
[CrossRef]

Lan, Y.

Langellier, N.

G. Chang, C.-H. Li, A. Glenday, G. Furesz, N. Langellier, L.-J. Chen, M. W. Webber, J. Lim, H.-W. Chen, D. F. Phillips, A. Szentgyorgyi, R. L. Walsworth, and F. X. Kaertner, in Conference on Lasers and Electro-Optics 2012, OSA Technical Digest (online) (Optical Society of America, 2012), paper CF2C.4.

Lederer, M. J.

Lee, Y. C.

Leitenstorfer, A.

Li, C.-H.

C.-H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kartner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, Nature 452, 610 (2008).
[CrossRef]

G. Chang, C.-H. Li, A. Glenday, G. Furesz, N. Langellier, L.-J. Chen, M. W. Webber, J. Lim, H.-W. Chen, D. F. Phillips, A. Szentgyorgyi, R. L. Walsworth, and F. X. Kaertner, in Conference on Lasers and Electro-Optics 2012, OSA Technical Digest (online) (Optical Society of America, 2012), paper CF2C.4.

Li, D.

Lim, J.

H.-W. Chen, J. Lim, S.-W. Huang, D. N. Schimpf, F. X. Kärtner, and G. Chang, Opt. Express 20, 28672 (2012).
[CrossRef]

G. Chang, C.-H. Li, A. Glenday, G. Furesz, N. Langellier, L.-J. Chen, M. W. Webber, J. Lim, H.-W. Chen, D. F. Phillips, A. Szentgyorgyi, R. L. Walsworth, and F. X. Kaertner, in Conference on Lasers and Electro-Optics 2012, OSA Technical Digest (online) (Optical Society of America, 2012), paper CF2C.4.

Liu, B.

Liu, H.

Liu, X.

X. Liu, G. E. Villanueva, J. Laegsgaard, U. Moller, H. Tu, S. A. Boppart, and D. Turchinovich, IEEE Photon. Technol. Lett. 25, 892 (2013).
[CrossRef]

Lu, F.

Luan, F.

D. V. Skryabin, F. Luan, J. C. Knight, and P. St. J. Russell, Science 301, 1705 (2003).
[CrossRef]

Luther-Davies, B.

Magee, J. C.

N. Ji, J. C. Magee, and E. Betzig, Nat. Methods 5, 197 (2008).
[CrossRef]

Masters, B. R.

B. R. Masters and P. So, Handbook of Biomedical Nonlinear Optical Microscopy (Oxford University, 2008).

Menyuk, C. R.

Moller, U.

X. Liu, G. E. Villanueva, J. Laegsgaard, U. Moller, H. Tu, S. A. Boppart, and D. Turchinovich, IEEE Photon. Technol. Lett. 25, 892 (2013).
[CrossRef]

Morgner, U.

Nie, B.

Petrich, G. S.

Phillips, D. F.

C.-H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kartner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, Nature 452, 610 (2008).
[CrossRef]

G. Chang, C.-H. Li, A. Glenday, G. Furesz, N. Langellier, L.-J. Chen, M. W. Webber, J. Lim, H.-W. Chen, D. F. Phillips, A. Szentgyorgyi, R. L. Walsworth, and F. X. Kaertner, in Conference on Lasers and Electro-Optics 2012, OSA Technical Digest (online) (Optical Society of America, 2012), paper CF2C.4.

Renninger, W. H.

Russell, P. St. J.

D. V. Skryabin, F. Luan, J. C. Knight, and P. St. J. Russell, Science 301, 1705 (2003).
[CrossRef]

Sasselov, D.

C.-H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kartner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, Nature 452, 610 (2008).
[CrossRef]

Scheu, R.

Scheuer, V.

Schimpf, D. N.

Schmalz, M.

Sell, A.

Sennaroglu, A.

Skryabin, D. V.

D. V. Skryabin, F. Luan, J. C. Knight, and P. St. J. Russell, Science 301, 1705 (2003).
[CrossRef]

So, P.

B. R. Masters and P. So, Handbook of Biomedical Nonlinear Optical Microscopy (Oxford University, 2008).

Song, Y.

Sumpf, B.

Szentgyorgyi, A.

C.-H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kartner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, Nature 452, 610 (2008).
[CrossRef]

G. Chang, C.-H. Li, A. Glenday, G. Furesz, N. Langellier, L.-J. Chen, M. W. Webber, J. Lim, H.-W. Chen, D. F. Phillips, A. Szentgyorgyi, R. L. Walsworth, and F. X. Kaertner, in Conference on Lasers and Electro-Optics 2012, OSA Technical Digest (online) (Optical Society of America, 2012), paper CF2C.4.

Tartara, L.

L. Tartara, I. Cristiani, and V. Degiorgio, Appl. Phys. B 77, 307 (2003).
[CrossRef]

Torizuka, K.

Tschudi, T.

Tu, H.

X. Liu, G. E. Villanueva, J. Laegsgaard, U. Moller, H. Tu, S. A. Boppart, and D. Turchinovich, IEEE Photon. Technol. Lett. 25, 892 (2013).
[CrossRef]

H. Tu and S. A. Boppart, Opt. Express 17, 9858 (2009).
[CrossRef]

Turchinovich, D.

X. Liu, G. E. Villanueva, J. Laegsgaard, U. Moller, H. Tu, S. A. Boppart, and D. Turchinovich, IEEE Photon. Technol. Lett. 25, 892 (2013).
[CrossRef]

Uecker, R.

Uemura, S.

Villanueva, G. E.

X. Liu, G. E. Villanueva, J. Laegsgaard, U. Moller, H. Tu, S. A. Boppart, and D. Turchinovich, IEEE Photon. Technol. Lett. 25, 892 (2013).
[CrossRef]

Wabnitz, S.

Wai, P. K. A.

Walsworth, R. L.

C.-H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kartner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, Nature 452, 610 (2008).
[CrossRef]

G. Chang, C.-H. Li, A. Glenday, G. Furesz, N. Langellier, L.-J. Chen, M. W. Webber, J. Lim, H.-W. Chen, D. F. Phillips, A. Szentgyorgyi, R. L. Walsworth, and F. X. Kaertner, in Conference on Lasers and Electro-Optics 2012, OSA Technical Digest (online) (Optical Society of America, 2012), paper CF2C.4.

Wang, C.

Wang, J.

Webber, M. W.

G. Chang, C.-H. Li, A. Glenday, G. Furesz, N. Langellier, L.-J. Chen, M. W. Webber, J. Lim, H.-W. Chen, D. F. Phillips, A. Szentgyorgyi, R. L. Walsworth, and F. X. Kaertner, in Conference on Lasers and Electro-Optics 2012, OSA Technical Digest (online) (Optical Society of America, 2012), paper CF2C.4.

Wise, F. W.

Xu, S.

Yang, Z.

Appl. Opt. (1)

Appl. Phys. B (1)

L. Tartara, I. Cristiani, and V. Degiorgio, Appl. Phys. B 77, 307 (2003).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

X. Liu, G. E. Villanueva, J. Laegsgaard, U. Moller, H. Tu, S. A. Boppart, and D. Turchinovich, IEEE Photon. Technol. Lett. 25, 892 (2013).
[CrossRef]

Nat. Methods (1)

N. Ji, J. C. Magee, and E. Betzig, Nat. Methods 5, 197 (2008).
[CrossRef]

Nature (1)

C.-H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kartner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, Nature 452, 610 (2008).
[CrossRef]

Opt. Express (8)

Opt. Lett. (6)

Phys. Rev. A (1)

N. Akhmediev and M. Karlsson, Phys. Rev. A 51, 2602 (1995).
[CrossRef]

Phys. Rev. E (1)

V. I. Karpman, Phys. Rev. E 47, 2073 (1993).
[CrossRef]

Science (1)

D. V. Skryabin, F. Luan, J. C. Knight, and P. St. J. Russell, Science 301, 1705 (2003).
[CrossRef]

Other (3)

B. R. Masters and P. So, Handbook of Biomedical Nonlinear Optical Microscopy (Oxford University, 2008).

G. Chang, C.-H. Li, A. Glenday, G. Furesz, N. Langellier, L.-J. Chen, M. W. Webber, J. Lim, H.-W. Chen, D. F. Phillips, A. Szentgyorgyi, R. L. Walsworth, and F. X. Kaertner, in Conference on Lasers and Electro-Optics 2012, OSA Technical Digest (online) (Optical Society of America, 2012), paper CF2C.4.

G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Simulation of FOCR by solving the generalized nonlinear Schrödinger equation. (a) FOCR evolution versus fiber length assuming 780 pJ input pulse energy. The blue dashed line marks the 37 mm fiber length where a broadband FOCR continuum forms. (b) FOCR evolution versus pulse energy for a PCF of 3.7 cm in length. The blue dashed line marks the 780 pJ pulse energy where a broadband FOCR continuum forms. The spectral intensity in both figures is presented on a logarithm scale.

Fig. 2.
Fig. 2.

Schematic setup of the 3 GHz ultrafast FOCR source. HW, half-wave plate; PBC, polarization beam combiner; WDM, wavelength-division multiplexing; BC, (6+1)×1 beam combiner; SPF, short-wavelength-pass optical filter that only transmits wavelength components below 950 nm; DCM, double-chirped mirror.

Fig. 3.
Fig. 3.

Optical spectra at the output of the 3 GHz oscillator (blue dotted line), preamplifier (red dashed line), and power amplifier (green solid line), respectively. Inset: measured autocorrelation (AC) trace of the compressed pulses after the power amplifier (solid line) and the calculated autocorrelation trace of the transform-limited pulse (dotted line).

Fig. 4.
Fig. 4.

(a) Measured output spectra versus coupled pulse energy into 3.7 cm PCF NL-3.2-945. Spectral intensity is shown on a logarithm scale. (b) Measured output spectra after a short-wavelength-pass optical filter that blocks spectral components above 950 nm. Spectral intensity is shown on a linear scale. The green curve in (b) shows the measured average power after the short-wavelength-pass optical filter. Blue dashed lines in both figures mark the 780 pJ pulse energy corresponding to the broadband FOCR.

Fig. 5.
Fig. 5.

(a) Filtered spectra of broadband FOCR at three different fiber lengths: 28 mm (red dashed line), 37 mm (black solid line), and 48 mm (blue dotted line). These three spectra are generated at different input pulse energies: 1430 pJ (28 mm PCF), 780 pJ (37 mm PCF), and 440 pJ (48 mm PCF). The spectra are all normalized to their spectral peak at 940 nm. (b) Black solid line: measured autocorrelation trace of the compressed FOCR pulse using DCMs to compensate for the phase from the FOCR spectrum [i.e., black solid curve in (a)] generated from the 37 mm PCF with 780 pJ input pulse energy. Red dashed line: calculated autocorrelation trace of the transform-limited pulse given by the FOCR spectrum.

Metrics