Abstract

A novel approach to increase the measurement range of the optical vector network analyzer (OVNA) based on optical single-sideband (OSSB) modulation is proposed and experimentally demonstrated. In the proposed system, each comb line in an optical frequency comb (OFC) is selected by an optical filter and used as the optical carrier for the OSSB-based OVNA. The frequency responses of an optical device-under-test (ODUT) are thus measured channel by channel. Because the comb lines in the OFC have fixed frequency spacing, by fitting the responses measured in all channels together, the magnitude and phase responses of the ODUT can be accurately achieved in a large range. A proof-of-concept experiment is performed. A measurement range of 105 GHz and a resolution of 1 MHz is achieved when a five-comb-line OFC with a frequency spacing of 20 GHz is applied to measure the magnitude and phase responses of a fiber Bragg grating.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Riemensberger, K. Hartinger, T. Herr, V. Brasch, R. Holzwarth, and T. J. Kippenberg, Opt. Express 20, 27661 (2012).
    [CrossRef]
  2. I. Fescenko, J. Alnis, A. Schliesser, C. Y. Wang, T. J. Kippenberg, and T. W. Hänsch, Opt. Express 20, 19185 (2012).
    [CrossRef]
  3. Y. Painchaud, M. Aubé, G. Brochu, and M.-J. Picard, Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides, OSA Technical Digest (CD) (Optical Society of America, 2010), paper BTuC3.
  4. T. Niemi, M. Uusimaa, and H. Ludvigsen, IEEE Photon. Technol. Lett. 13, 1334 (2001).
    [CrossRef]
  5. G. D. Van Wiggeren, A. R. Motamedi, and D. M. Baney, IEEE Photon. Technol. Lett. 15, 263 (2003).
    [CrossRef]
  6. J. E. Román, M. Y. Frankel, and R. D. Esman, Opt. Lett. 23, 939 (1998).
    [CrossRef]
  7. R. Hernandez, A. Loayssa, and D. Benito, Opt. Eng. 43, 2418 (2004).
    [CrossRef]
  8. A. Loayssa, R. Hernández, D. Benito, and S. Galech, Opt. Lett. 29, 638 (2004).
    [CrossRef]
  9. M. Sagues and A. Loayssa, Electron. Lett. 47, 47 (2011).
    [CrossRef]
  10. M. Sagues and A. Loayssa, Opt. Express 18, 17555 (2010).
    [CrossRef]
  11. Z. Z. Tang, S. L. Pan, and J. P. Yao, Opt. Express 20, 6555 (2012).
    [CrossRef]
  12. M. Xue, S. L. Pan, X. W. Gu, and Y. J. Zhao, J. Opt. Soc. Am. B 30, 928 (2013).
    [CrossRef]
  13. M. Wang and J. P. Yao, IEEE Photon. Technol. Lett. 25, 753 (2013).
    [CrossRef]
  14. C. He, S. L. Pan, R. H. Guo, Y. J. Zhao, and M. H. Pan, Opt. Lett. 37, 3834 (2012).
    [CrossRef]
  15. I. S. Grudinin, L. Baumgartel, and N. Yu, Opt. Express 20, 6604 (2012).
    [CrossRef]

2013 (2)

M. Wang and J. P. Yao, IEEE Photon. Technol. Lett. 25, 753 (2013).
[CrossRef]

M. Xue, S. L. Pan, X. W. Gu, and Y. J. Zhao, J. Opt. Soc. Am. B 30, 928 (2013).
[CrossRef]

2012 (5)

2011 (1)

M. Sagues and A. Loayssa, Electron. Lett. 47, 47 (2011).
[CrossRef]

2010 (1)

2004 (2)

A. Loayssa, R. Hernández, D. Benito, and S. Galech, Opt. Lett. 29, 638 (2004).
[CrossRef]

R. Hernandez, A. Loayssa, and D. Benito, Opt. Eng. 43, 2418 (2004).
[CrossRef]

2003 (1)

G. D. Van Wiggeren, A. R. Motamedi, and D. M. Baney, IEEE Photon. Technol. Lett. 15, 263 (2003).
[CrossRef]

2001 (1)

T. Niemi, M. Uusimaa, and H. Ludvigsen, IEEE Photon. Technol. Lett. 13, 1334 (2001).
[CrossRef]

1998 (1)

Alnis, J.

Aubé, M.

Y. Painchaud, M. Aubé, G. Brochu, and M.-J. Picard, Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides, OSA Technical Digest (CD) (Optical Society of America, 2010), paper BTuC3.

Baney, D. M.

G. D. Van Wiggeren, A. R. Motamedi, and D. M. Baney, IEEE Photon. Technol. Lett. 15, 263 (2003).
[CrossRef]

Baumgartel, L.

Benito, D.

A. Loayssa, R. Hernández, D. Benito, and S. Galech, Opt. Lett. 29, 638 (2004).
[CrossRef]

R. Hernandez, A. Loayssa, and D. Benito, Opt. Eng. 43, 2418 (2004).
[CrossRef]

Brasch, V.

Brochu, G.

Y. Painchaud, M. Aubé, G. Brochu, and M.-J. Picard, Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides, OSA Technical Digest (CD) (Optical Society of America, 2010), paper BTuC3.

Esman, R. D.

Fescenko, I.

Frankel, M. Y.

Galech, S.

Grudinin, I. S.

Gu, X. W.

Guo, R. H.

Hänsch, T. W.

Hartinger, K.

He, C.

Hernandez, R.

R. Hernandez, A. Loayssa, and D. Benito, Opt. Eng. 43, 2418 (2004).
[CrossRef]

Hernández, R.

Herr, T.

Holzwarth, R.

Kippenberg, T. J.

Loayssa, A.

M. Sagues and A. Loayssa, Electron. Lett. 47, 47 (2011).
[CrossRef]

M. Sagues and A. Loayssa, Opt. Express 18, 17555 (2010).
[CrossRef]

A. Loayssa, R. Hernández, D. Benito, and S. Galech, Opt. Lett. 29, 638 (2004).
[CrossRef]

R. Hernandez, A. Loayssa, and D. Benito, Opt. Eng. 43, 2418 (2004).
[CrossRef]

Ludvigsen, H.

T. Niemi, M. Uusimaa, and H. Ludvigsen, IEEE Photon. Technol. Lett. 13, 1334 (2001).
[CrossRef]

Motamedi, A. R.

G. D. Van Wiggeren, A. R. Motamedi, and D. M. Baney, IEEE Photon. Technol. Lett. 15, 263 (2003).
[CrossRef]

Niemi, T.

T. Niemi, M. Uusimaa, and H. Ludvigsen, IEEE Photon. Technol. Lett. 13, 1334 (2001).
[CrossRef]

Painchaud, Y.

Y. Painchaud, M. Aubé, G. Brochu, and M.-J. Picard, Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides, OSA Technical Digest (CD) (Optical Society of America, 2010), paper BTuC3.

Pan, M. H.

Pan, S. L.

Picard, M.-J.

Y. Painchaud, M. Aubé, G. Brochu, and M.-J. Picard, Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides, OSA Technical Digest (CD) (Optical Society of America, 2010), paper BTuC3.

Riemensberger, J.

Román, J. E.

Sagues, M.

M. Sagues and A. Loayssa, Electron. Lett. 47, 47 (2011).
[CrossRef]

M. Sagues and A. Loayssa, Opt. Express 18, 17555 (2010).
[CrossRef]

Schliesser, A.

Tang, Z. Z.

Uusimaa, M.

T. Niemi, M. Uusimaa, and H. Ludvigsen, IEEE Photon. Technol. Lett. 13, 1334 (2001).
[CrossRef]

Van Wiggeren, G. D.

G. D. Van Wiggeren, A. R. Motamedi, and D. M. Baney, IEEE Photon. Technol. Lett. 15, 263 (2003).
[CrossRef]

Wang, C. Y.

Wang, M.

M. Wang and J. P. Yao, IEEE Photon. Technol. Lett. 25, 753 (2013).
[CrossRef]

Xue, M.

Yao, J. P.

M. Wang and J. P. Yao, IEEE Photon. Technol. Lett. 25, 753 (2013).
[CrossRef]

Z. Z. Tang, S. L. Pan, and J. P. Yao, Opt. Express 20, 6555 (2012).
[CrossRef]

Yu, N.

Zhao, Y. J.

Electron. Lett. (1)

M. Sagues and A. Loayssa, Electron. Lett. 47, 47 (2011).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

M. Wang and J. P. Yao, IEEE Photon. Technol. Lett. 25, 753 (2013).
[CrossRef]

T. Niemi, M. Uusimaa, and H. Ludvigsen, IEEE Photon. Technol. Lett. 13, 1334 (2001).
[CrossRef]

G. D. Van Wiggeren, A. R. Motamedi, and D. M. Baney, IEEE Photon. Technol. Lett. 15, 263 (2003).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Eng. (1)

R. Hernandez, A. Loayssa, and D. Benito, Opt. Eng. 43, 2418 (2004).
[CrossRef]

Opt. Express (5)

Opt. Lett. (3)

Other (1)

Y. Painchaud, M. Aubé, G. Brochu, and M.-J. Picard, Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides, OSA Technical Digest (CD) (Optical Society of America, 2010), paper BTuC3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Schematic diagram of the proposed approach to extend the measurement range of the OSSB-based OVNA. LD, laser diode; PC, polarization controller; PolM, polarization modulator; RF, radio frequency; Pol, polarizer; TOBPF, tunable optical bandpass filter; PM, phase modulator; FBG, fiber Bragg grating; PD, photodetector; PMD, phase-magnitude detector.

Fig. 2.
Fig. 2.

Optical spectra of (a) the five-comb-line OFC with a frequency spacing of 20 GHz and (b) the five optical carriers selected from the OFC by the TOBPF.

Fig. 3.
Fig. 3.

(a) Magnitude and (b) phase responses of a FBG measured by the proposed approach in the range of 105 GHz.

Metrics