Abstract

Lateral shear interferometer is a simple yet powerful method for testing wavefronts or measuring refractive index changes. Previously, we have reported a method of using two holographic lenses to obtain shear and to generate a spatial frequency carrier, which was used for quantitative analysis. This technique has some advantages such as stability and instantaneous measurements. In this Letter, we report a method of using white light with holographic gratings to obtain shear and also to perform wavefront analysis using the spatial carrier fringes generated at a specific selected wavelength from the white light spectrum. We show that the sensitivity of the setup can be changed by selecting different wavelengths from the spectrum.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Mallick and D. Malacara, in Optical Shop Testing, D. Malacara, ed. (Wiley Interscience, 2007).
  2. S. Mallick and D. Malacara, in Optical Shop Testing, D. Malacara, ed. (Wiley Interscience, 2007).
  3. H. Schreiber and J. H. Bruning, in Optical Shop Testing, D. Malacara, ed. (Wiley Interscience, 2007).
  4. C. Joenathan, G. Pedrini, I. Alekseenko, and W. Osten, Opt. Eng. 52, 035603 (2013).
    [CrossRef]
  5. C. Joenathan, V. Parthiban, and R. S. Sirohi, Opt. Eng. 26, 359 (1987).
    [CrossRef]
  6. C. Joenathan, A. Bernal, and R. S. Sirohi, Opt. Eng. 52, 084103 (2013).
    [CrossRef]
  7. C. Joenathan, A. Bernal, and R. S. Sirohi, Appl. Opt. 52, 5570 (2013).
    [CrossRef]
  8. A. S. G. Singh, A. Anand, R. A. Leitgeb, and B. Javidi, Opt. Express 20, 23617 (2012).
    [CrossRef]
  9. T. J. McIntyre, C. Maurer, S. Bernet, and M. Ritsch-Marte, Opt. Lett. 34, 2988 (2009).
    [CrossRef]
  10. J. W. Goodman, in Introduction of Fourier Optics (Roberts & Company, 2005), pp. 332–336.
  11. K. J. Gåsvik, in Optical Metrology (Wiley, 2002).
  12. M. Takeda, H. Ina, and S. Kobayashi, J. Opt. Soc. Am. 72, 156 (1982).
    [CrossRef]
  13. F. M. Espiau and Y. Chang, “Microwave energized plasma lamp with solid dielectric waveguide,” U.S. patent6,922,021 (July26, 2005).
  14. R. Gilliard, M. DeVincentis, A. Hafidi, D. O’Hare, and G. Hollingsworth, IEEE Trans. Plasma Sci. 39, 1026 (2011).
    [CrossRef]
  15. E. B. Champagne, J. Opt. Soc. Am. 57, 51 (1967).
    [CrossRef]
  16. C. M. Vest, Holographic Interferometry (Wiley, 1979).

2013 (3)

C. Joenathan, A. Bernal, and R. S. Sirohi, Opt. Eng. 52, 084103 (2013).
[CrossRef]

C. Joenathan, G. Pedrini, I. Alekseenko, and W. Osten, Opt. Eng. 52, 035603 (2013).
[CrossRef]

C. Joenathan, A. Bernal, and R. S. Sirohi, Appl. Opt. 52, 5570 (2013).
[CrossRef]

2012 (1)

2011 (1)

R. Gilliard, M. DeVincentis, A. Hafidi, D. O’Hare, and G. Hollingsworth, IEEE Trans. Plasma Sci. 39, 1026 (2011).
[CrossRef]

2009 (1)

1987 (1)

C. Joenathan, V. Parthiban, and R. S. Sirohi, Opt. Eng. 26, 359 (1987).
[CrossRef]

1982 (1)

1967 (1)

Alekseenko, I.

C. Joenathan, G. Pedrini, I. Alekseenko, and W. Osten, Opt. Eng. 52, 035603 (2013).
[CrossRef]

Anand, A.

Bernal, A.

C. Joenathan, A. Bernal, and R. S. Sirohi, Opt. Eng. 52, 084103 (2013).
[CrossRef]

C. Joenathan, A. Bernal, and R. S. Sirohi, Appl. Opt. 52, 5570 (2013).
[CrossRef]

Bernet, S.

Bruning, J. H.

H. Schreiber and J. H. Bruning, in Optical Shop Testing, D. Malacara, ed. (Wiley Interscience, 2007).

Champagne, E. B.

Chang, Y.

F. M. Espiau and Y. Chang, “Microwave energized plasma lamp with solid dielectric waveguide,” U.S. patent6,922,021 (July26, 2005).

DeVincentis, M.

R. Gilliard, M. DeVincentis, A. Hafidi, D. O’Hare, and G. Hollingsworth, IEEE Trans. Plasma Sci. 39, 1026 (2011).
[CrossRef]

Espiau, F. M.

F. M. Espiau and Y. Chang, “Microwave energized plasma lamp with solid dielectric waveguide,” U.S. patent6,922,021 (July26, 2005).

Gåsvik, K. J.

K. J. Gåsvik, in Optical Metrology (Wiley, 2002).

Gilliard, R.

R. Gilliard, M. DeVincentis, A. Hafidi, D. O’Hare, and G. Hollingsworth, IEEE Trans. Plasma Sci. 39, 1026 (2011).
[CrossRef]

Goodman, J. W.

J. W. Goodman, in Introduction of Fourier Optics (Roberts & Company, 2005), pp. 332–336.

Hafidi, A.

R. Gilliard, M. DeVincentis, A. Hafidi, D. O’Hare, and G. Hollingsworth, IEEE Trans. Plasma Sci. 39, 1026 (2011).
[CrossRef]

Hollingsworth, G.

R. Gilliard, M. DeVincentis, A. Hafidi, D. O’Hare, and G. Hollingsworth, IEEE Trans. Plasma Sci. 39, 1026 (2011).
[CrossRef]

Ina, H.

Javidi, B.

Joenathan, C.

C. Joenathan, G. Pedrini, I. Alekseenko, and W. Osten, Opt. Eng. 52, 035603 (2013).
[CrossRef]

C. Joenathan, A. Bernal, and R. S. Sirohi, Opt. Eng. 52, 084103 (2013).
[CrossRef]

C. Joenathan, A. Bernal, and R. S. Sirohi, Appl. Opt. 52, 5570 (2013).
[CrossRef]

C. Joenathan, V. Parthiban, and R. S. Sirohi, Opt. Eng. 26, 359 (1987).
[CrossRef]

Kobayashi, S.

Leitgeb, R. A.

Malacara, D.

S. Mallick and D. Malacara, in Optical Shop Testing, D. Malacara, ed. (Wiley Interscience, 2007).

S. Mallick and D. Malacara, in Optical Shop Testing, D. Malacara, ed. (Wiley Interscience, 2007).

Mallick, S.

S. Mallick and D. Malacara, in Optical Shop Testing, D. Malacara, ed. (Wiley Interscience, 2007).

S. Mallick and D. Malacara, in Optical Shop Testing, D. Malacara, ed. (Wiley Interscience, 2007).

Maurer, C.

McIntyre, T. J.

O’Hare, D.

R. Gilliard, M. DeVincentis, A. Hafidi, D. O’Hare, and G. Hollingsworth, IEEE Trans. Plasma Sci. 39, 1026 (2011).
[CrossRef]

Osten, W.

C. Joenathan, G. Pedrini, I. Alekseenko, and W. Osten, Opt. Eng. 52, 035603 (2013).
[CrossRef]

Parthiban, V.

C. Joenathan, V. Parthiban, and R. S. Sirohi, Opt. Eng. 26, 359 (1987).
[CrossRef]

Pedrini, G.

C. Joenathan, G. Pedrini, I. Alekseenko, and W. Osten, Opt. Eng. 52, 035603 (2013).
[CrossRef]

Ritsch-Marte, M.

Schreiber, H.

H. Schreiber and J. H. Bruning, in Optical Shop Testing, D. Malacara, ed. (Wiley Interscience, 2007).

Singh, A. S. G.

Sirohi, R. S.

C. Joenathan, A. Bernal, and R. S. Sirohi, Appl. Opt. 52, 5570 (2013).
[CrossRef]

C. Joenathan, A. Bernal, and R. S. Sirohi, Opt. Eng. 52, 084103 (2013).
[CrossRef]

C. Joenathan, V. Parthiban, and R. S. Sirohi, Opt. Eng. 26, 359 (1987).
[CrossRef]

Takeda, M.

Vest, C. M.

C. M. Vest, Holographic Interferometry (Wiley, 1979).

Appl. Opt. (1)

IEEE Trans. Plasma Sci. (1)

R. Gilliard, M. DeVincentis, A. Hafidi, D. O’Hare, and G. Hollingsworth, IEEE Trans. Plasma Sci. 39, 1026 (2011).
[CrossRef]

J. Opt. Soc. Am. (2)

Opt. Eng. (3)

C. Joenathan, G. Pedrini, I. Alekseenko, and W. Osten, Opt. Eng. 52, 035603 (2013).
[CrossRef]

C. Joenathan, V. Parthiban, and R. S. Sirohi, Opt. Eng. 26, 359 (1987).
[CrossRef]

C. Joenathan, A. Bernal, and R. S. Sirohi, Opt. Eng. 52, 084103 (2013).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Other (7)

J. W. Goodman, in Introduction of Fourier Optics (Roberts & Company, 2005), pp. 332–336.

K. J. Gåsvik, in Optical Metrology (Wiley, 2002).

F. M. Espiau and Y. Chang, “Microwave energized plasma lamp with solid dielectric waveguide,” U.S. patent6,922,021 (July26, 2005).

C. M. Vest, Holographic Interferometry (Wiley, 1979).

S. Mallick and D. Malacara, in Optical Shop Testing, D. Malacara, ed. (Wiley Interscience, 2007).

S. Mallick and D. Malacara, in Optical Shop Testing, D. Malacara, ed. (Wiley Interscience, 2007).

H. Schreiber and J. H. Bruning, in Optical Shop Testing, D. Malacara, ed. (Wiley Interscience, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Schematic arrangement of the white light lateral shear interferometer with an integration hologram forming shear along the y axis.

Fig. 2.
Fig. 2.

Fourier transform spectrum obtained after the captured images for (a) red light, (b) green light, and (c) blue light with the CCD camera. The distance between zeroth order and first order depends on the wavelength, which is evident in the separation of the spots.

Fig. 3.
Fig. 3.

These three pictures show phase maps of the same spherical aberration for (a) red light, (b) green light, and (c) blue light testing. Each wavelength has different sensitivity for the same aberration. Long wavelengths have low sensitivity.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

sin(αc)=λcλrsin(αo)andzi=λrfλc,
γ=J1(πχλ)πχλ,
νc=Δyλf.
λ=dsin(θ).
F1(B^(νnν1))=I(x,y)C1Mexp(i[kwyΔy]n),
wy=mλΔy,
Δwerror=mdsin(θ)ΔθΔy,

Metrics