Abstract

We propose a new scheme of microwave photonic filter (MPF) based on the polarization processing of a broadband optical source (BOS), which features single-bandpass response and a wide span of operation bandwidth. The BOS is orthogonally polarized by a polarization division multiplexing emulator (PDME) with a tunable time delay between the two polarization states and incident at ±45° to one principle axis of a polarization modulator (PolM). The PDME cascades a PolM, and a polarizer realizes a microwave modulation making the phase of the carrier able to be tuned while ±1st sidebands remain unchanged, which after propagating in a dispersive medium results in a tunable single-bandpass response in the RF domain. We experimentally verify the MPF. By adjusting the time delay and the optical spectrum bandwidth, the passband center frequency is continuously tuned from DC to 20 GHz and the 3 dB passband bandwidth changes while the optical spectrum bandwidth ranges from 1 to 4 nm.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. A. Minasian, IEEE Trans. Microwave Theory Tech. 54, 832 (2006).
    [CrossRef]
  2. J. P. Yao, J. Lightwave Technol. 27, 314 (2009).
    [CrossRef]
  3. J. Capmany, J. Mora, I. Gasulla, J. Sancho, J. Lloret, and S. Sales, J. Lightwave Technol. 31, 571 (2013).
    [CrossRef]
  4. Y. Yan and J. Yao, Opt. Lett. 33, 1756 (2008).
    [CrossRef]
  5. Y. Yu, E. Xu, J. Dong, L. Zhou, X. Li, and X. Zhang, Opt. Express, 18, 25271 (2010).
    [CrossRef]
  6. T. Chen, X. Yi, T. X. H. Huang, and R. A. Minasian, Opt. Lett. 35, 3934 (2010).
    [CrossRef]
  7. E. Hamidi, D. E. Leaird, and A. M. Weiner, IEEE Trans. Microwave Theory Tech. 58, 3269 (2010).
    [CrossRef]
  8. W. Li, N. H. Zhu, and L. X. Wang, IEEE Photon. J. 3, 462 (2011).
    [CrossRef]
  9. Y. M. Zhang and S. L. Pan, Opt. Lett. 38, 802 (2013).
    [CrossRef]
  10. T. X. Huang, X. K. Yi, and R. A. Minasian, Opt. Express 19, 6231 (2011).
    [CrossRef]
  11. X. X. Xue, X. P. Zheng, H. Y. Zhang, and B. K. Zhou, Opt. Express 19, 18423 (2011).
    [CrossRef]
  12. L. W. Li, X. K. Yi, T. X. Huang, and R. A. Minasian, Opt. Lett. 38, 1164 (2013).
    [CrossRef]
  13. S. L. Pan and Y. M. Zhang, Opt. Lett. 37, 4483 (2012).
    [CrossRef]
  14. X. X. Xue, X. P. Zheng, H. Y. Zhang, and B. K. Zhou, J. Lightwave Technol. 31, 2263 (2013).
    [CrossRef]
  15. X. X. Xue, X. P. Zheng, H. Y. Zhang, and B. K. Zhou, Opt. Express 20, 26929 (2012).
    [CrossRef]
  16. M. Song, C. M. Long, R. Wu, D. Seo, D. E. Leaird, and A. M. Weiner, IEEE Photon. Technol. Lett. 23, 1618 (2011).
    [CrossRef]

2013

2012

2011

W. Li, N. H. Zhu, and L. X. Wang, IEEE Photon. J. 3, 462 (2011).
[CrossRef]

M. Song, C. M. Long, R. Wu, D. Seo, D. E. Leaird, and A. M. Weiner, IEEE Photon. Technol. Lett. 23, 1618 (2011).
[CrossRef]

T. X. Huang, X. K. Yi, and R. A. Minasian, Opt. Express 19, 6231 (2011).
[CrossRef]

X. X. Xue, X. P. Zheng, H. Y. Zhang, and B. K. Zhou, Opt. Express 19, 18423 (2011).
[CrossRef]

2010

2009

2008

2006

R. A. Minasian, IEEE Trans. Microwave Theory Tech. 54, 832 (2006).
[CrossRef]

Capmany, J.

Chen, T.

Dong, J.

Gasulla, I.

Hamidi, E.

E. Hamidi, D. E. Leaird, and A. M. Weiner, IEEE Trans. Microwave Theory Tech. 58, 3269 (2010).
[CrossRef]

Huang, T. X.

Huang, T. X. H.

Leaird, D. E.

M. Song, C. M. Long, R. Wu, D. Seo, D. E. Leaird, and A. M. Weiner, IEEE Photon. Technol. Lett. 23, 1618 (2011).
[CrossRef]

E. Hamidi, D. E. Leaird, and A. M. Weiner, IEEE Trans. Microwave Theory Tech. 58, 3269 (2010).
[CrossRef]

Li, L. W.

Li, W.

W. Li, N. H. Zhu, and L. X. Wang, IEEE Photon. J. 3, 462 (2011).
[CrossRef]

Li, X.

Lloret, J.

Long, C. M.

M. Song, C. M. Long, R. Wu, D. Seo, D. E. Leaird, and A. M. Weiner, IEEE Photon. Technol. Lett. 23, 1618 (2011).
[CrossRef]

Minasian, R. A.

Mora, J.

Pan, S. L.

Sales, S.

Sancho, J.

Seo, D.

M. Song, C. M. Long, R. Wu, D. Seo, D. E. Leaird, and A. M. Weiner, IEEE Photon. Technol. Lett. 23, 1618 (2011).
[CrossRef]

Song, M.

M. Song, C. M. Long, R. Wu, D. Seo, D. E. Leaird, and A. M. Weiner, IEEE Photon. Technol. Lett. 23, 1618 (2011).
[CrossRef]

Wang, L. X.

W. Li, N. H. Zhu, and L. X. Wang, IEEE Photon. J. 3, 462 (2011).
[CrossRef]

Weiner, A. M.

M. Song, C. M. Long, R. Wu, D. Seo, D. E. Leaird, and A. M. Weiner, IEEE Photon. Technol. Lett. 23, 1618 (2011).
[CrossRef]

E. Hamidi, D. E. Leaird, and A. M. Weiner, IEEE Trans. Microwave Theory Tech. 58, 3269 (2010).
[CrossRef]

Wu, R.

M. Song, C. M. Long, R. Wu, D. Seo, D. E. Leaird, and A. M. Weiner, IEEE Photon. Technol. Lett. 23, 1618 (2011).
[CrossRef]

Xu, E.

Xue, X. X.

Yan, Y.

Yao, J.

Yao, J. P.

Yi, X.

Yi, X. K.

Yu, Y.

Zhang, H. Y.

Zhang, X.

Zhang, Y. M.

Zheng, X. P.

Zhou, B. K.

Zhou, L.

Zhu, N. H.

W. Li, N. H. Zhu, and L. X. Wang, IEEE Photon. J. 3, 462 (2011).
[CrossRef]

IEEE Photon. J.

W. Li, N. H. Zhu, and L. X. Wang, IEEE Photon. J. 3, 462 (2011).
[CrossRef]

IEEE Photon. Technol. Lett.

M. Song, C. M. Long, R. Wu, D. Seo, D. E. Leaird, and A. M. Weiner, IEEE Photon. Technol. Lett. 23, 1618 (2011).
[CrossRef]

IEEE Trans. Microwave Theory Tech.

R. A. Minasian, IEEE Trans. Microwave Theory Tech. 54, 832 (2006).
[CrossRef]

E. Hamidi, D. E. Leaird, and A. M. Weiner, IEEE Trans. Microwave Theory Tech. 58, 3269 (2010).
[CrossRef]

J. Lightwave Technol.

Opt. Express

Opt. Lett.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

(a) Experimental setup. (b) Polarization alignment. Broadband optical source (BOS), polarization controller (PC), polarization division multiplexing emulator (PDME), polarization beam splitter (PBS), polarization beam combiner (PBC), variable delay line (VDL), polarization modulator (PolM), polarizer (Pol), dispersion compensating fiber (DCF), and photodiode (PD).

Fig. 2.
Fig. 2.

Phase evolution of optical carriers along the optical spectrum.

Fig. 3.
Fig. 3.

Illustration of the optical frequency to time mapping effect caused by the DCF. Orange line: electrical slicing response before the DCF. Red line: linear time delay amount imposed onto the input optical field. Blue line: the final time domain impulse response of the MPF.

Fig. 4.
Fig. 4.

(a) Optical spectrum of the BOS. (b) Result for each polarized state (PS1 and PS2) measured, respectively, at the output of Pol.2.

Fig. 5.
Fig. 5.

Measured frequency response versus simulated response at 4 GHz.

Fig. 6.
Fig. 6.

Measured frequency responses of the proposed tunable MPF by adjusting the time delay through continuously tuning the VDL in the PDME.

Fig. 7.
Fig. 7.

(a) Frequency responses of the proposed MPF at different optical spectrum bandwidths from (b) 1 to 4 nm.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

EPolM(t)=[ExEy][E(t)ej(βcos(ωmt))E(t)ej(βcos(ωmt)+φ0)],
EPol.2(t)=EPS1(t)+EPS2(t)E(t){cos[βcos(ωmt)φ02]+jsin[βcos(ωmt)φ02]}.
EPol.2(t)=EPS1(t)+EPS2(t)E(t){cos[βcos(ωmt)]+jsin[βcos(ωmt)]}=E(t){J0(β)+2n=1(1)nJ2n(β)cos(2nωmt)2jn=1(1)nJ2n1(β)cos[(2n1)ωmt]}.
EPol.2(t)=EPS1(t)+EPS2(t)J0(β)E(t)+j2J1(β)E(t)cos(ωmt).
EPol.2(t)=EPS1(t)|tΔτ+EPS2(t)=EPS1(tΔτ)+EPS2(t)J0(β)E(tΔτ)+j2J1(β)E(t)cos(ωmt),
EPol.2(Ω)J0(β)E(Ω)ejΩΔτ+jJ1(β)[E(Ωωm)+E(Ω+ωm)].
Φ(Ω)=ejθ2(ΩΩ0)22,
IPD(ω)=12π0+Eout(Ω)Eout*(Ωω)dΩ.
H(ω)B(ω+Δτθ2)ej(θ2ω22Ω0Δτ)+B(ωΔτθ2)ej(θ2ω22Ω0Δτ).
B(ω)=12π0+N(Ω)ejωθ2(ΩΩ0)dΩ,

Metrics