Abstract

Characterization of stimulated Brillouin scattering (SBS) in a few-mode fiber (FMF) is experimentally demonstrated, where the Brillouin gain spectrum (BGS) of intramodal or intermodal SBS is analyzed for different pump–probe pairs of four LP modes—LP01, LP11, LP21, and LP02 modes—guided in the fiber. A mode-division multiplexer composed of concatenated mode-selective couplers is applied for selective launching of each LP mode, and a differential measurement scheme is adopted for the analysis of the BGS. The intermodal SBS is observed in each pump–probe pair of different modes, and the Brillouin gain is measured to be within 14%–45% of that of the SBS between the LP01 modes. The SBS threshold of each LP mode in the FMF is also evaluated.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Al Amin, A. Li, X. Chen, and W. Shieh, Electron. Lett. 47, 606 (2011).
    [CrossRef]
  2. S. Randel, R. Ryf, A. Sierra, P. J. Winzer, A. H. Gnauck, C. A. Bolle, R. J. Essiambre, D. W. Peckham, A. McCurdy, and R. Lingle, Opt. Express 19, 16697 (2011).
    [CrossRef]
  3. A. Kobyakov, S. Kumar, D. Q. Chowdhury, A. B. Ruffin, M. Sauer, S. R. Bickham, and R. Mishra, Opt. Express 13, 5338 (2005).
    [CrossRef]
  4. M. Nikles, L. Thevenaz, and P. A. Roberts, J. Lightwave Technol. 15, 1842 (1997).
    [CrossRef]
  5. B. Ward and M. Mermelstein, Opt. Express 18, 1952 (2010).
    [CrossRef]
  6. K. Y. Song, Y. H. Kim, and B. Y. Kim, Opt. Lett. 38, 1805 (2013).
    [CrossRef]
  7. W. V. Sorin, B. Y. Kim, and H. J. Shaw, Opt. Lett. 11, 106 (1986).
    [CrossRef]
  8. W. V. Sorin, B. Y. Kim, and H. J. Shaw, Opt. Lett. 11, 581 (1986).
    [CrossRef]
  9. K. Y. Song, I. K. Hwang, S. H. Yun, and B. Y. Kim, IEEE Photon. Technol. Lett. 14, 501 (2002).
    [CrossRef]
  10. K. Y. Song and B. Y. Kim, IEEE Photon. Technol. Lett. 15, 1734 (2003).
    [CrossRef]
  11. J. H. Jeong, K. Lee, K. Y. Song, J. M. Jeong, and S. B. Lee, Opt. Express 20, 27094 (2012).
    [CrossRef]
  12. K. Jen, A. Safaai-Jazi, and G. W. Farnell, IEEE Trans. Ultrason. Ferroelectr. Freq. Control UFFC-33, 634 (1986).

2013 (1)

2012 (1)

2011 (2)

2010 (1)

2005 (1)

2003 (1)

K. Y. Song and B. Y. Kim, IEEE Photon. Technol. Lett. 15, 1734 (2003).
[CrossRef]

2002 (1)

K. Y. Song, I. K. Hwang, S. H. Yun, and B. Y. Kim, IEEE Photon. Technol. Lett. 14, 501 (2002).
[CrossRef]

1997 (1)

M. Nikles, L. Thevenaz, and P. A. Roberts, J. Lightwave Technol. 15, 1842 (1997).
[CrossRef]

1986 (3)

K. Jen, A. Safaai-Jazi, and G. W. Farnell, IEEE Trans. Ultrason. Ferroelectr. Freq. Control UFFC-33, 634 (1986).

W. V. Sorin, B. Y. Kim, and H. J. Shaw, Opt. Lett. 11, 106 (1986).
[CrossRef]

W. V. Sorin, B. Y. Kim, and H. J. Shaw, Opt. Lett. 11, 581 (1986).
[CrossRef]

Al Amin, A.

A. Al Amin, A. Li, X. Chen, and W. Shieh, Electron. Lett. 47, 606 (2011).
[CrossRef]

Bickham, S. R.

Bolle, C. A.

Chen, X.

A. Al Amin, A. Li, X. Chen, and W. Shieh, Electron. Lett. 47, 606 (2011).
[CrossRef]

Chowdhury, D. Q.

Essiambre, R. J.

Farnell, G. W.

K. Jen, A. Safaai-Jazi, and G. W. Farnell, IEEE Trans. Ultrason. Ferroelectr. Freq. Control UFFC-33, 634 (1986).

Gnauck, A. H.

Hwang, I. K.

K. Y. Song, I. K. Hwang, S. H. Yun, and B. Y. Kim, IEEE Photon. Technol. Lett. 14, 501 (2002).
[CrossRef]

Jen, K.

K. Jen, A. Safaai-Jazi, and G. W. Farnell, IEEE Trans. Ultrason. Ferroelectr. Freq. Control UFFC-33, 634 (1986).

Jeong, J. H.

Jeong, J. M.

Kim, B. Y.

K. Y. Song, Y. H. Kim, and B. Y. Kim, Opt. Lett. 38, 1805 (2013).
[CrossRef]

K. Y. Song and B. Y. Kim, IEEE Photon. Technol. Lett. 15, 1734 (2003).
[CrossRef]

K. Y. Song, I. K. Hwang, S. H. Yun, and B. Y. Kim, IEEE Photon. Technol. Lett. 14, 501 (2002).
[CrossRef]

W. V. Sorin, B. Y. Kim, and H. J. Shaw, Opt. Lett. 11, 106 (1986).
[CrossRef]

W. V. Sorin, B. Y. Kim, and H. J. Shaw, Opt. Lett. 11, 581 (1986).
[CrossRef]

Kim, Y. H.

Kobyakov, A.

Kumar, S.

Lee, K.

Lee, S. B.

Li, A.

A. Al Amin, A. Li, X. Chen, and W. Shieh, Electron. Lett. 47, 606 (2011).
[CrossRef]

Lingle, R.

McCurdy, A.

Mermelstein, M.

Mishra, R.

Nikles, M.

M. Nikles, L. Thevenaz, and P. A. Roberts, J. Lightwave Technol. 15, 1842 (1997).
[CrossRef]

Peckham, D. W.

Randel, S.

Roberts, P. A.

M. Nikles, L. Thevenaz, and P. A. Roberts, J. Lightwave Technol. 15, 1842 (1997).
[CrossRef]

Ruffin, A. B.

Ryf, R.

Safaai-Jazi, A.

K. Jen, A. Safaai-Jazi, and G. W. Farnell, IEEE Trans. Ultrason. Ferroelectr. Freq. Control UFFC-33, 634 (1986).

Sauer, M.

Shaw, H. J.

Shieh, W.

A. Al Amin, A. Li, X. Chen, and W. Shieh, Electron. Lett. 47, 606 (2011).
[CrossRef]

Sierra, A.

Song, K. Y.

K. Y. Song, Y. H. Kim, and B. Y. Kim, Opt. Lett. 38, 1805 (2013).
[CrossRef]

J. H. Jeong, K. Lee, K. Y. Song, J. M. Jeong, and S. B. Lee, Opt. Express 20, 27094 (2012).
[CrossRef]

K. Y. Song and B. Y. Kim, IEEE Photon. Technol. Lett. 15, 1734 (2003).
[CrossRef]

K. Y. Song, I. K. Hwang, S. H. Yun, and B. Y. Kim, IEEE Photon. Technol. Lett. 14, 501 (2002).
[CrossRef]

Sorin, W. V.

Thevenaz, L.

M. Nikles, L. Thevenaz, and P. A. Roberts, J. Lightwave Technol. 15, 1842 (1997).
[CrossRef]

Ward, B.

Winzer, P. J.

Yun, S. H.

K. Y. Song, I. K. Hwang, S. H. Yun, and B. Y. Kim, IEEE Photon. Technol. Lett. 14, 501 (2002).
[CrossRef]

Electron. Lett. (1)

A. Al Amin, A. Li, X. Chen, and W. Shieh, Electron. Lett. 47, 606 (2011).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

K. Y. Song, I. K. Hwang, S. H. Yun, and B. Y. Kim, IEEE Photon. Technol. Lett. 14, 501 (2002).
[CrossRef]

K. Y. Song and B. Y. Kim, IEEE Photon. Technol. Lett. 15, 1734 (2003).
[CrossRef]

IEEE Trans. Ultrason. Ferroelectr. Freq. Control (1)

K. Jen, A. Safaai-Jazi, and G. W. Farnell, IEEE Trans. Ultrason. Ferroelectr. Freq. Control UFFC-33, 634 (1986).

J. Lightwave Technol. (1)

M. Nikles, L. Thevenaz, and P. A. Roberts, J. Lightwave Technol. 15, 1842 (1997).
[CrossRef]

Opt. Express (4)

Opt. Lett. (3)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Structure of the MDM composed of three different MSCs: MSC, mode-selective coupler; PC, polarization controller; MS, mode stripper (by bending).

Fig. 2.
Fig. 2.

Experimental setup for measurement of the SBS in the FMF. The inset C schematically shows the operation principle of the differential measurement applied for the analysis of the BGS: EDFA, Er-doped fiber amplifier; PM, phase modulator; SSBM, single-sideband modulator; EOM, electro-optic modulator; LIA, lock-in amplifier; FBG, fiber Bragg grating.

Fig. 3.
Fig. 3.

BGS of the intramodal SBS in the FMF fitted with four Lorentzian curves for each.

Fig. 4.
Fig. 4.

(a) Brillouin frequency and (b) relative amplitudes of the BGS peaks measured in the intramodal SBS.

Fig. 5.
Fig. 5.

BGS of the intermodal SBS in the FMF fitted with different numbers (1–3) of Lorentzian curves for each.

Fig. 6.
Fig. 6.

Brillouin frequency of the BGS peaks measured in the intermodal SBS between different mode pairs of the pump–probe.

Fig. 7.
Fig. 7.

Relative amplitude of the BGS peaks measured in the intermodal SBS between different mode pairs of the pump–probe.

Fig. 8.
Fig. 8.

Power of the backscattered Stokes wave as a function of the pump for each mode in the 850 m FMF. The dashed line indicates the SBS threshold.

Tables (3)

Tables Icon

Table 1. Specifications of MDM

Tables Icon

Table 2. Gain Bandwidth (FWHM) of Intermodal SBS (Dominant Peaks in the List of Fig. 7)

Tables Icon

Table 3. Brillouin Gain Coefficient for Mode Pair of Pump–Probea

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

νB=Va·(n1λ1+n2λ2)Vaλ·(n1+n2),

Metrics