Abstract

This Letter describes a universal calibration theory by which conventional interferometry can be extended to vibration robust snapshot polarization-sensitive spectral reflectometry without any complicated optical components or active devices. Experiments for verifying the proposed calibration theory have been conducted by using a Michelson-interferometer-based normal incidence spectroellipsometric system, and also some key system design considerations for object 3D pose tolerant measurement capability have been drawn. The proposed solution enables us to extract the spectroscopic ellipsometric parameter Δ(k) of an anisotropic object within 10 ms with high accuracy.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (North-Holland, 1987).
  2. X. Niu, N. Jakatdar, J. Bao, and C. J. Spanos, IEEE Trans. Semicond. Manuf. 14, 97 (2001).
    [CrossRef]
  3. H. Hazebroek and A. Holscher, J. Phys. E 6, 822 (1973).
    [CrossRef]
  4. K. Oka and T. Kato, Opt. Lett. 24, 1475 (1999).
    [CrossRef]
  5. D. Kim, H. Kim, R. Magnusson, Y. Cho, W. Chegal, and H. Cho, Opt. Express 19, 23790 (2011).
    [CrossRef]
  6. D. Kim, S. Kim, H. Kong, and Y. Lee, Opt. Lett. 27, 1893 (2002).
    [CrossRef]
  7. M. Takeda, H. Ina, and S. Kobayashi, J. Opt. Soc. Am. 72, 156 (1982).
    [CrossRef]
  8. A. L. Fymat, Appl. Opt. 10, 2499 (1971).
    [CrossRef]

2011

2002

2001

X. Niu, N. Jakatdar, J. Bao, and C. J. Spanos, IEEE Trans. Semicond. Manuf. 14, 97 (2001).
[CrossRef]

1999

1982

1973

H. Hazebroek and A. Holscher, J. Phys. E 6, 822 (1973).
[CrossRef]

1971

Azzam, R. M. A.

R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (North-Holland, 1987).

Bao, J.

X. Niu, N. Jakatdar, J. Bao, and C. J. Spanos, IEEE Trans. Semicond. Manuf. 14, 97 (2001).
[CrossRef]

Bashara, N. M.

R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (North-Holland, 1987).

Chegal, W.

Cho, H.

Cho, Y.

Fymat, A. L.

Hazebroek, H.

H. Hazebroek and A. Holscher, J. Phys. E 6, 822 (1973).
[CrossRef]

Holscher, A.

H. Hazebroek and A. Holscher, J. Phys. E 6, 822 (1973).
[CrossRef]

Ina, H.

Jakatdar, N.

X. Niu, N. Jakatdar, J. Bao, and C. J. Spanos, IEEE Trans. Semicond. Manuf. 14, 97 (2001).
[CrossRef]

Kato, T.

Kim, D.

Kim, H.

Kim, S.

Kobayashi, S.

Kong, H.

Lee, Y.

Magnusson, R.

Niu, X.

X. Niu, N. Jakatdar, J. Bao, and C. J. Spanos, IEEE Trans. Semicond. Manuf. 14, 97 (2001).
[CrossRef]

Oka, K.

Spanos, C. J.

X. Niu, N. Jakatdar, J. Bao, and C. J. Spanos, IEEE Trans. Semicond. Manuf. 14, 97 (2001).
[CrossRef]

Takeda, M.

Appl. Opt.

IEEE Trans. Semicond. Manuf.

X. Niu, N. Jakatdar, J. Bao, and C. J. Spanos, IEEE Trans. Semicond. Manuf. 14, 97 (2001).
[CrossRef]

J. Opt. Soc. Am.

J. Phys. E

H. Hazebroek and A. Holscher, J. Phys. E 6, 822 (1973).
[CrossRef]

Opt. Express

Opt. Lett.

Other

R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (North-Holland, 1987).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Schematic of the snapshot phase-resolved polarization-sensitive spectral reflectometer with the description of the object plane three-dimensional pose.

Fig. 2.
Fig. 2.

Interfered spectrum raw data captured by the dual-spectrum sensing module.

Fig. 3.
Fig. 3.

Measured Δm(k) obtained by varying the plane mirror object plane tilt angle α with β=0 (a) when a cube-type nonpolarizing beam splitter is used in the dual-spectrum sensing module and (b) when a polka-dot beam splitter is employed.

Fig. 4.
Fig. 4.

(a) Measured Δm(k) obtained by varying the spectral carrier frequency h and (b) calibrated Δm(k,h) for h variation when h=h0=25μm.

Fig. 5.
Fig. 5.

Object 3D pose tolerant anisotropy Δa(k) measurement result comparison between the vertically aligned grating and the horizontally aligned one.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

ITM(k)=|ER_TM(k)|2+|EO_TM(k)|2+2γTM(k,h,α,β)|ER_TM(k)||EO_TM(k)|cos{ΦTM(k,h,α,β)},
ΦTM(k,h,α,β)=2kh+ϕTM_Obj anisotropy(k)ϕTM_R(k)+ϕTM_Remaining optics(k,α,β).
Δm(k,h,α,β)=ΦTM(k,h,α,β)ΦTE(k,h,α,β)=[2(kTMkTE)h]+[ϕTM_Obj anisotropy(k)ϕTE_Obj anisotropy(k)]+[ϕTM_Remaining optics(k,α,β)ϕTE_Remaining optics(k,α,β)]=ΔSpectrometer(k,h)+ΔObj anisotropy(k)+ΔObj plane tilt(k,α,β)+ΔBackground(k)=Δs(k,h)+Δa(k)+Δt(k,α,β)+Δb(k).

Metrics