Abstract

We report the experimental realization of nonuniformly correlated partially coherent light (NUCPCL) beams by passing laser beams through a phase-only spatial light modulator. The characteristics of NUCPCL beams whose coherence is of Gaussian distribution as well as inverse Gaussian distribution are studied theoretically and experimentally. It is shown that the experimental observations are in agreement with our theoretical analysis. NUCPCL beams may have some applications in optical manipulation.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Gbur and E. Wolf, J. Opt. Soc. Am. A 19, 1592 (2002).
    [CrossRef]
  2. F. Gori, Opt. Lett. 23, 241 (1998).
    [CrossRef]
  3. A. Dogariu and S. Amarande, Opt. Lett. 28, 10 (2003).
    [CrossRef]
  4. J. C. Ricklin and F. M. Davidson, J. Opt. Soc. Am. A 19, 1794 (2002).
    [CrossRef]
  5. O. Korotkova, J. Pu, and E. Wolf, J. Mod. Opt. 55, 1199 (2008).
    [CrossRef]
  6. G. Gbur and T. D. Visser, Prog. Opt. 55, 285 (2010).
    [CrossRef]
  7. O. Korotkova and E. Wolf, Opt. Commun. 246, 35 (2005).
    [CrossRef]
  8. O. Korotkova and E. Shchepakina, Opt. Lett. 35, 3772 (2010).
    [CrossRef]
  9. S. G. Reddy, A. Kumar, S. Prabhakar, and R. P. Singh, http://arxiv.org/abs/1302.2466 .
  10. Z. Chen, L. Hua, and J. Pu, Prog. Opt. 57, 219 (2012).
    [CrossRef]
  11. F. Gori and M. Santarsiero, Opt. Lett. 32, 3531 (2007).
    [CrossRef]
  12. H. Lajunen and T. Saastamoinen, Opt. Lett. 36, 4104 (2011).
    [CrossRef]
  13. Z. S. Tong and O. Krortkova, Opt. Lett. 37, 3240 (2012).
    [CrossRef]
  14. J. Tervo, T. Setälä, and A. T. Friberg, Opt. Lett. 37, 151 (2012).
    [CrossRef]
  15. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University, 1995).

2012 (3)

2011 (1)

2010 (2)

G. Gbur and T. D. Visser, Prog. Opt. 55, 285 (2010).
[CrossRef]

O. Korotkova and E. Shchepakina, Opt. Lett. 35, 3772 (2010).
[CrossRef]

2008 (1)

O. Korotkova, J. Pu, and E. Wolf, J. Mod. Opt. 55, 1199 (2008).
[CrossRef]

2007 (1)

2005 (1)

O. Korotkova and E. Wolf, Opt. Commun. 246, 35 (2005).
[CrossRef]

2003 (1)

2002 (2)

1998 (1)

Amarande, S.

Chen, Z.

Z. Chen, L. Hua, and J. Pu, Prog. Opt. 57, 219 (2012).
[CrossRef]

Davidson, F. M.

Dogariu, A.

Friberg, A. T.

Gbur, G.

G. Gbur and T. D. Visser, Prog. Opt. 55, 285 (2010).
[CrossRef]

G. Gbur and E. Wolf, J. Opt. Soc. Am. A 19, 1592 (2002).
[CrossRef]

Gori, F.

Hua, L.

Z. Chen, L. Hua, and J. Pu, Prog. Opt. 57, 219 (2012).
[CrossRef]

Korotkova, O.

O. Korotkova and E. Shchepakina, Opt. Lett. 35, 3772 (2010).
[CrossRef]

O. Korotkova, J. Pu, and E. Wolf, J. Mod. Opt. 55, 1199 (2008).
[CrossRef]

O. Korotkova and E. Wolf, Opt. Commun. 246, 35 (2005).
[CrossRef]

Krortkova, O.

Kumar, A.

S. G. Reddy, A. Kumar, S. Prabhakar, and R. P. Singh, http://arxiv.org/abs/1302.2466 .

Lajunen, H.

Mandel, L.

L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University, 1995).

Prabhakar, S.

S. G. Reddy, A. Kumar, S. Prabhakar, and R. P. Singh, http://arxiv.org/abs/1302.2466 .

Pu, J.

Z. Chen, L. Hua, and J. Pu, Prog. Opt. 57, 219 (2012).
[CrossRef]

O. Korotkova, J. Pu, and E. Wolf, J. Mod. Opt. 55, 1199 (2008).
[CrossRef]

Reddy, S. G.

S. G. Reddy, A. Kumar, S. Prabhakar, and R. P. Singh, http://arxiv.org/abs/1302.2466 .

Ricklin, J. C.

Saastamoinen, T.

Santarsiero, M.

Setälä, T.

Shchepakina, E.

Singh, R. P.

S. G. Reddy, A. Kumar, S. Prabhakar, and R. P. Singh, http://arxiv.org/abs/1302.2466 .

Tervo, J.

Tong, Z. S.

Visser, T. D.

G. Gbur and T. D. Visser, Prog. Opt. 55, 285 (2010).
[CrossRef]

Wolf, E.

O. Korotkova, J. Pu, and E. Wolf, J. Mod. Opt. 55, 1199 (2008).
[CrossRef]

O. Korotkova and E. Wolf, Opt. Commun. 246, 35 (2005).
[CrossRef]

G. Gbur and E. Wolf, J. Opt. Soc. Am. A 19, 1592 (2002).
[CrossRef]

L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University, 1995).

J. Mod. Opt. (1)

O. Korotkova, J. Pu, and E. Wolf, J. Mod. Opt. 55, 1199 (2008).
[CrossRef]

J. Opt. Soc. Am. A (2)

Opt. Commun. (1)

O. Korotkova and E. Wolf, Opt. Commun. 246, 35 (2005).
[CrossRef]

Opt. Lett. (7)

Prog. Opt. (2)

G. Gbur and T. D. Visser, Prog. Opt. 55, 285 (2010).
[CrossRef]

Z. Chen, L. Hua, and J. Pu, Prog. Opt. 57, 219 (2012).
[CrossRef]

Other (2)

S. G. Reddy, A. Kumar, S. Prabhakar, and R. P. Singh, http://arxiv.org/abs/1302.2466 .

L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Experimental setup for generating NUCPCL beams. BS is a beam splitter. P is polarizer. PSLM is a phase-only spatial light modulator. Both PC1 and PC2 are computers.

Fig. 2.
Fig. 2.

Random phases loaded in PSLM. (a) Nonrandom phase diagram and (b) largest random phase diagram.

Fig. 3.
Fig. 3.

Random phases loaded in PSLM. (a) Inverse Gaussian distribution and (b) Gaussian distribution.

Fig. 4.
Fig. 4.

Theoretical simulations and experimental results of the light beams intensity. (a), (b) Incident light beams; (c), (d) Gaussian NUCPCL beams; (e), (f) inverse Gaussian NUCPCL flat-topped beams. (a), (c), (e) theoretical simulations; (b), (d), (f) experimental results.

Fig. 5.
Fig. 5.

Measurement of coherence degrees. (a) The schematics for measuring the coherence degrees by two-pinhole interference experiment. (b) Two-pinhole interference fringes at different positions (A, B, and C) across the light beam section, respectively.

Fig. 6.
Fig. 6.

Measured degree of coherence for the two-pinhole (the separation distance is fixed to be 0.6 mm) at different positions across the beam. The solid curves are the theoretically numerical simulations based on Eqs. (9) and (11) in which η=0.26 and σ0=0.65. (a) Coherence degree of Gaussian NUCPCL beam and (b) coherence degree of inverse Gaussian NUCPCL beam. The dots are experimental results.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

φ(r)=rand[2π×f(r)],
W(r1,r2,0)=I(r1,0)I(r2,0)μ(r1,r2,0),
I(r,0)=I0exp(2r2w02)
μ(r1,r2,0)=|exp{i[φ(r1)φ(r2)]}|=|exp{2πi×[randf(r1)randf(r2)]}|=|exp{2πi×{f(r2)rand[f(r1)+f(r2)]}}|.
μ(r1,r2,0)={1[f(r1)+f(r2)2]}.
μ(r1,r2,0)={1η[f(r1)+f(r2)2]}.
η=μmaxμminμmax,
φ(r)=rand{2π×[1exp(r2σ02)]},
μ(r1,r2,0)=1η+η2[exp(r12σ02)+exp(r22σ02)].
φ(r)=rand[2π×exp(r2σ02)]
μ(r1,r2,0)=1η2[exp(r12σ02)+exp(r22σ02)].
I(r,z)=W(r,r,z)=W(r1,r2,0)×exp{ik2z[(r1r)2(r2r)2]}dr1dr2.

Metrics