Abstract

Differential phase measurement between radially polarized (RP) and azimuthally polarized (AP) beams is an important technique in microscopic surface plasmon resonance (SPR) biosensors as reported in our earlier works [Opt. Lett. 37, 2091 (2012); Appl. Phys. Lett. 102, 011114 (2013)]. However, such a technique suffers complex beam splitting, detection, and data processing procedures for RP and AP beams which may lower the accuracy of phase measurement. In this Letter, a novel plasmonic petal-shaped vector beam is proposed instead of RP and AP beams, greatly simplifying the sensor system and enabling single measurement in differential interferometry. Moreover, an improved ultrahigh sensitivity on the order of 107 refractive index units (RIUs) is experimentally verified in the proposed system.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription